Regional analgesia can be defined as removal of nerve conduction and pain in certain parts of the body without causing sensory loss (1). Many other methods have been described up to the present since Hirschel’s application of the blinding axillary block in 1911 (2, 3).

The brachial plexus can be blocked through various anatomical approaches such as interscalene, supraclavicular, infraclavicular and axillary approaches. Axillary block techniques can be applied by using transarterial fixation, pares thesis or nerve stimulator (4). Current techniques available for nerve localization mark anatomical indicators for the estimated location of brachial plexus. As well as causing anxiety in the patient and the long application processes, blinding techniques may also cause nerve damage, vein perforations and complications such as systemically local anaesthetic toxic reactions (4). The nerve stimulator technique, however, ensures that the needle is correctly placed without causing paraesthesia. Ultrasonography allows us to display the brachial plexus with a higher quality and helps nerve localization, and these factors can increase the quality of the nerve block. Through ultrasonography (US), peripheral nerves, needle localization and local anaesthetic distribution, which is required for successful conduction of a block, can be directly displayed (5).

In our study, we have aimed to compare the sensory and motor block effects of peripheral nerve stimulation (PNS), which facilitates the application of axillary brachial plexus block (AXB) and increases the prospects, and the technique of US, that has recently been put into use.

Material and Methods

Having obtained the required written consents both from the Ethics Committee and from the 60 ASA I-II patients undergoing elective minor upper-limb surgery, including forearm, wrist, and hand procedures, the patients were prospectively enrolled. Using a computer-generated sequence of random numbers and sealed envelope technique, patients were randomly allocated to receive the axillary brachial plexus block using either ultrasound (US-guided group, n=30) or nerve stimulation (PNS group, n=30) guidance. Those with a history or presence of cardiac, respiratory and/or renal failures or were pregnant were not included in the study. No premedication was administered to the cases.

An intravenous cannula was inserted into the contralateral arm, and a continuous crystalloid solution infusion was started. For the whole procedure, the patients were routinely monitored with an electrocardiogram (ECG), non-invasive blood pressure (NIBP) measurement, and pulse oximetry (SpO$_2$).

Address for Correspondence: Dr. Beyazıt Zencirci, Department of Anesthesiology and Reanimation, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey Phone: +90 344 215 55 12 E-mail: bzencirci@fastmail.fm
AXB was carried out by abducting the arm that was to be blocked in a position to create a 90° angle with the body and, by flexing and externally rotating the forearm, the hand could be placed right next to the head and the palm positioned facedown. Following the positioning of the cases in both groups, the area on the axillary region to be operated was disinfected.

After the appropriate positioning of the US-guided group-patients, and following the completion of the required preparations, a 22 G insulated needle (Stimuplex® D 50 mm, B.Braun, Germany) was inserted into the axillary region under US guidance (by using Aloka® SSD-4000, Japan, 10 Mhz prob). First the radial, next median, thirdly ulnar and finally musculo-cutaneous nerves were identified. After identification of each nerve, 7-10 ml local anesthetic, with a total of 40 ml of 0.75% ropivacaine for the four nerves was injected; until the nerves were completely surrounded.

As for the cases in the PNS Group, following the appropriate positioning and completion of the required preparations, similar to the other group, a total of 40 ml-7-10 ml for each nerve of 0.75% Ropivacaine was injected by using nerve-stimulator-specific, sterile, teflon-isolated needles (22G insulated needle) (Stimuplex® D 50 mm [15°]) in company with the available nerve stimulator (Stimuplex® Dig RC, B.Braun, Melsungen, Germany). At the same time, the motor response elicited by the nerves that form the brachial plexus to nerve stimulation was also considered (radial: arm and finger extension, supination; median: wrist, 2nd and 3rd finger flexion, pronation; ulnar: 4th and 5th finger flexion, thumb adduction, musculo-cutaneous: arm flexion) (6).

The time included sonographic overview and identification of the targeted structures for US-guided group, identification of the nerves via peripheral nerve stimulator for PNS group, subcutaneous infiltration of the injection site, and application of local anesthetic to the direct vicinity of the four targeted nerves in both of two groups.

At the end of the AXB, the anesthetist performing the block evaluated sensory and motor block as follows: every five minutes and for 30 minutes the innervated areas in each dermatome was evaluated using a pinprick. When the needles were no longer felt, cutaneous anesthesia was considered to be present. The motor block was evaluated once at the end of the 30 minute period. The motor block was estimated as being 0, 33, 66 or 100%: 100%, no movement at all of the upper limb against gravity; 66%, flexion and/or extension movements in the hand but not in the arm; 33%, flexion and/or extension movements in both the hand and the arm against gravity but not against resistance; 0%, flexion and extension movements in both the hand and the arm against resistance (6).

The block was considered to be complete if the dermatomes of the nerves implicated in the surgical site were anaesthetised. All nerves of the surgical site including those of the skin, muscles, and bones were considered. The block was evaluated as incomplete and in need of completion before surgery if one of the nerves of the surgical site was not anaesthetized.

Statistical analysis
All data were collected in an Excel®.Sheet for documentation. For statistical analysis, the program SPSS 13.0® for Windows (LEAD Technologies Inc, USA, 2004) was used. The Mann-Whitney U test was used to compare the differences between demographic data of patients such as age, height, weight, and ASA status. The Chi square test was used to compare the differences related to gender. Differences in the onset times and anesthesia between the four nerves were tested using Friedman Repeated Measures Analysis of Variance (ANOVA) on Ranks. Parameters were given as mean±standard deviation. A p value of less than 0.05 was considered statistically significant.

Results

Twenty-nine female and 31 male patients were enrolled in the study. The demographic data and ASA status of the patients are shown in Table 1. No differences between the two groups were found with regard to the demographic data or ASA status.

The average time necessary to perform the AXB was similar in the two groups (p>0.05) (Table 2).

Although not significant statistically, it was observed that the sensory block had formed earlier in US-guided group (7.3±2.6 min in US-guided group, but 6.4±3.9 min in PNS group, p=0.39). The degree of motor blockade was more intense in the US-guided group than in the PNS group (p<0.05) (Table 3). The success rate of the sonographically guided axillary plexus block was 100%.

Table 1. Demographic data and ASA status

<table>
<thead>
<tr>
<th></th>
<th>US-guided group</th>
<th>PNS group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year) (mean±SD)</td>
<td>37.07±16.24</td>
<td>39.69±11.27</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>13/17</td>
<td>18/12</td>
</tr>
<tr>
<td>Height (cm) (mean±SD)</td>
<td>167.01±8.69</td>
<td>163.56±7.24</td>
</tr>
<tr>
<td>Weight (kg) (mean±SD)</td>
<td>77.41±14.85</td>
<td>74.49±11.26</td>
</tr>
<tr>
<td>ASA Status (ASA-1/ASA-2)</td>
<td>14/16</td>
<td>12/18</td>
</tr>
</tbody>
</table>

Table 2. Achievement of sensory block in 4 nerves

<table>
<thead>
<tr>
<th></th>
<th>US-guided group</th>
<th>PNS group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>13 (43.33%)</td>
<td>9 (30.00%)</td>
<td>0.29</td>
</tr>
<tr>
<td>20 min</td>
<td>24 (80.00%)</td>
<td>17 (56.67%)</td>
<td>0.21</td>
</tr>
<tr>
<td>30 min</td>
<td>30 (100.00%)</td>
<td>26 (86.67%)</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Table 3. Frequency distribution of patients in the two groups according to the motor blockade degree or quality

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>33%</th>
<th>66%*</th>
<th>100%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>US-guided</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>PNS</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

*Significant difference between the two groups (66% and 100%) (p<0.05)
There were neither cardiovascular side effects nor any accidental vascular punctures. No postoperative neurological symptoms were reported.

Discussion

There are various techniques to block the brachial plexus clavicle at different levels from both under and above. Recently, most of the techniques used to inject the local anesthetics have stipulated the use of paraesthesia. However, frequency of neurologic complications that occur following the AXB varies between 0.2 and 19%. This may occur as a result of a direct trauma to the nerve, local anesthetic toxicity, ischemia or a combination of all these factors (7, 8).

The spread of LA around all the nerves is obligatory to achieve complete AXB. Anatomical studies show the neurovascular space to be divided by multiple septae (9). This is the main reason for incomplete AXB. Two different methods are used to solve this problem. One is the use of high LA volumes to achieve a good distribution in the axillary sheath (10). This method has a low risk of nerve damage so the cannula is not redirected in an area already anaesthetised, but incomplete blockades occur in patients with firm tissue surrounding the nerves.

A more effective second method is the multiple approach to terminal nerve branches by using nerve stimulation (11, 12). Nerve stimulators, that were first applied in 1912 but only put into clinical use in 1962, have been an alternative to the technique of paraesthesia. It was believed that the nerve stimulator minimized the possibility of a probable neuropathy that could be caused by direct acute physical contact with the nerve with the paraesthesia technique. However, this method increases the risk of nerve damage by redirecting the cannula in a previously anaesthetised area. Therefore, paraesthesia loses its value as a warning sign (13). Fanelli et al. (11), reported a rate of 1.7% transient neurological complications using a multiple injection technique for peripheral nerve blockade.

The ultrasound approach identifies nerves, vessels, muscles, and septa. One main advantage of the sonographical approach is the ability to monitor the whole procedure of nerve blockade. Damage to important structures like vessels can be avoided during the puncture. We had no accidental vessel puncture in any patient. Therefore, redirecting the cannula can be performed under visual control. The risk of accidental nerve damage can thus possibly be reduced. On the other hand, not only does ultrasonography give us the opportunity to observe the LA solution surrounding the nerve but also it lets us observe the optimal distribution of the injected LA solution around the nerve.

In our study, 86.67% of the cases in the PNS group formed a full sensory block and 76.67% of these formed a full motor block within the first half hour (Table 2 and 3). On the other hand, in US-guided group sensory full block and motor full block rates were 100%. The fact that we obtain better results on the other hand, that motor block rate in this group was significantly higher in comparison with the other group.

Soeding et al. (18) determined that ultrasonography application significantly reduced the starting time of sensory and motor block and that it significantly increased the block quality. Kefalianakis et al. (19) stated that ultrasonography application decreases the starting time of block. In our study, we have identified that sensory block onset was earlier in the ultrasonography-applied group, although that was not statistically significant.

According to Liu et al. (20), ultrasonography application provides more accomplished sensory and motor blocks. The same researchers also reported that, through ultrasonography, they succeeded in providing a completely adequate analgesia without any complications in sixteen axillary-block applied cases of final-stage renal failures (21). We did not encounter any serious complications in our ultrasonography-applied group throughout the study.

Conclusion

Consequently, we established that sensory block started earlier in the ultrasound-guided AXB, although this was not statistically significant and that the success rate of motor block was higher. We believe that ultrasonography application can be a particularly good alternative, without causing any complications in cases with anatomic complexities.

Conflict of Interest

No conflict of interest was declared by the authors.

References

10. Jage J, Kossatz W, Biscoping J, Zink KU, Wagner W. Axillary blockade of the brachial plexus using 60 ml prilocaine 0.5% vs. 40 ml prilocaine 1%. A clinical study of 144 patients carried out by the determination of the prilocaine concentration in the central venous blood and by the measurement of the subfascial pressure in the plexus following the injection. Reg Anaesth 1990;13:112-7.