**Paraganglioma: A Case Report**

Paragangliomas are very rare tumors that must be excluded in the patients with hypertension associated with abdominal incidentaloma and/or unexpected drug-induced blood pressure changes. We report a 36-year-old woman with abdominal mass who had had a history of hypertensive attacks and a life-threatening hypotension after some drugs were being administered. Diagnostic procedures including measurement of urinary catecholamine metabolites, Computed tomography scan, $^{131}$I Metaiodobenzylguanidine scintigraphy, and histological examination of excised mass revealed the diagnosis of paraganglioma.

Key words: Paraganglioma, pheochromocytoma, hypertension

**Introduction**

Pheochromocytoma accounts for 0.1% of hypertensive patients. Most of them (90%) arise from the adrenal medulla, whereas 10% are extra-adrenal. Extra-adrenal pheochromocytomas are called paragangliomas and may arise anywhere but are mostly located in the retroperitoneum arising from the sympathetic chain or from the organ of Zuckerkandl (1). Patients with such tumors typically present with symptoms resulting from excess production of catecholamines (2).

**Case Report**

A 36-year-old female patient was referred to our department because of an upper left side mass of the abdomen on ultrasound examination. The medical history included occasional palpitation with flushing and sweating for two years and hypertensive attacks for two months. Two months before admission she was seen in another hospital because of nausea, abdominal pain, and a hypertensive episode (220/110 mmHg). At that time she was being given metoclopramide 2 mg, hyoscine-N-butyl bromide 20 mg, and ranitidine 50 mg intravenously. Her blood pressure had dropped (70/30 mmHg) and respiratory failure had developed immediately after injections. She was admitted to our intensive care unit because of hypotension and acute respiratory failure. One week later she felt good and an ultrasound examination demonstrated a mass in the upper left side of the abdomen.

She did not drink alcohol, or use drugs. But she was a smoker (6 packets/year). There was also a history of headache and weakness. The patient’s mother had primary hypertension.

The temperature was 36°C, the respirations were 16/min, and the pulse-rate was 88/min. While the patient was supine, the blood pressure was 120/70...
CASE REPORT

mm Hg in the right arm and 130/70 mm Hg in the left arm; while he was standing, the blood pressure was 110/60 mm Hg. She was otherwise unremarkable.

During the hospital stay, the patient experienced several attacks of palpitation, mild sweats, which lasted from a few hours to several hours and which were accompanied by hypertensive attacks of maximal level of 180/110 mm Hg. Hematologic laboratory values, blood chemical levels including calcium were normal. Serum parathormone (PTH IRMA, intact) and 24- hours urinary calcium levels were normal. Fundoscopic examination of the eyes was also normal. During attacks urinary specimens were collected for assay 24-hours urine metabolites of catecholamines. Results of 24-hour urinary studies were as follows: vanillylmandelic acid, 14.4 mg/24 h and 11.6 mg/24 h (normal range: 1.9-9.8 mg/24 h); normetanephrine, 7344 µg/24 h (normal range: 88-444 µg/24 h); metanephrine, 78 µg/24 h (normal range: 52-341 µg/24 h). A computed tomography (CT) scan demonstrated a lesion at the site of pars horizontalis of duodenum which was inhomogeneous, and an intravenous bolus of contrast material made the central, low-density region and the surroundings, hyper-density region of the tumor (Figure 1). [131I] metaiodobenzylguanidine scintigraphy (MIBG) revealed pathological storage at the same region and no metastatic activity was reported (Figure 2). Anti hypertensive medication (doxazosin 2 mg/d and thereafter atenolol 1x25 mg/d) was started two week prior to the operation, and the patient felt better with this treatment. Under general anesthesia, laparotomy revealed a well-demarcated, 6x8 cm, soft, mobile tumor near the duodenum.

After resection of the tumor her blood pressure dropped to 90/60 mm Hg. Bolus saline infusion was started immediately and the blood pressure was stabilized. On pathologic examination, the biopsy specimen was compatible with paraganglioma. Tumor cells were positive for chromogranin, neuron specific enolase and vimentin. Sustentacular cells were positive for S-100 protein (Figure 3).

The postoperative course was uncomplicated. Anti hypertensive medication was stopped, and the patient was discharged 9 days after operation without any of the former symptoms.

Discussion

Paraganglioma is a rare tumor and may occur in any area of the body where paraganglionic tissue is present, including chemoreceptors, retroperitoneal ganglia, and adrenal medulla, where it is called
Urine is collected during or soon after a hypertensive crisis, when the levels of catecholamines and their metabolites are typically at least three times as high as normal (5). CT has good sensitivity (93% to 100%) for detecting adrenal pheochromocytoma. Sensitivity decreases to approximately 90% for extra-adrenal pheochromocytomas. In contrast, magnetic resonance imaging has lower or equal sensitivity for detecting adrenal pheochromocytomas but is superior for detecting extra-adrenal tumors. Both imaging methods have poor specificity, as low as 50% in some studies. MIBG scanning offers superior specificity (95% to 100%) and is helpful in diagnosing extra-adrenal tumors. However, it is not sensitive enough (77% to 90%) to exclude pheochromocytoma (10).

The definitive treatment for pheochromocytoma and paraganglioma is surgical excision of the tumor. Surgery for pheochromocytoma entails several considerations. Induction of anesthesia before surgery, manipulation of the tumor, or other stimulation can cause massive outpouring of catecholamines from the tumor, resulting in hypertensive crisis, stroke, arrhythmias, or myocardial infarction. To prevent these problems, patients must undergo pharmacologic blockade of catecholamine synthesis or effects before surgery (10). For acute treatment of severe hypertensive episode either α-blockade with phentolamine or sodium nitroprusside infusion is indicated, followed by β-adrenergic blockade once α-blockage is accomplished (8).

The diagnosis of pheochromocytoma and paraganglioma are initially established by demonstrating elevated urinary or plasma catecholamines or catecholamine metabolites, typically in urine samples but also sometimes in plasma samples (8). Diagnostic accuracy is improved by measuring at least two of three substances. The sensitivity is increased if the urine is collected during or soon after a hypertensive crisis, when the levels of catecholamines and their metabolites are typically at least three times as high as normal (5). CT has good sensitivity (93% to 100%) for detecting adrenal pheochromocytoma. Sensitivity decreases to approximately 90% for extra-adrenal pheochromocytomas. In contrast, magnetic resonance imaging has lower or equal sensitivity for detecting adrenal pheochromocytomas but is superior for detecting extra-adrenal tumors. Both imaging methods have poor specificity, as low as 50% in some studies. MIBG scanning offers superior specificity (95% to 100%) and is helpful in diagnosing extra-adrenal tumors. However, it is not sensitive enough (77% to 90%) to exclude pheochromocytoma (10).

The definitive treatment for pheochromocytoma and paraganglioma is surgical excision of the tumor. Surgery for pheochromocytoma entails several considerations. Induction of anesthesia before surgery, manipulation of the tumor, or other stimulation can cause massive outpouring of catecholamines from the tumor, resulting in hypertensive crisis, stroke, arrhythmias, or myocardial infarction. To prevent these problems, patients must undergo pharmacologic blockade of catecholamine synthesis or effects before surgery (10). For acute treatment of severe hypertensive episode either α-blockade with phentolamine or sodium nitroprusside infusion is indicated, followed by β-adrenergic blockade once α-blockage is accomplished (8).

Alpha-Methyl-para-tyrosine competitively inhibits tyrosine hydroxylase and decreases catecholamine formation. The combination of metyrosine, phenoxybenzamine, a β-blocker, and liberal salt intake starting 10 to 14 days before surgery leads to better control of blood pressure and decreases surgical risks. Aggressive fluid replacement to manage intra- and postoperative hypotension is very important (8). Residual nonparoxysmal hypertension is found in 27% to 38% of patients after tumor removal (10).

Ten to 15% of the pheochromocytomas are malignant with metastatic spread. The malignancy rate is 25 to 40% with extra-adrenal localization, compared with 2-11% in adrenal localization (11). Although there was no invasion or distant metastasis, it is reasonable to provide lifelong follow-up for this patient.
CASE REPORT

Even though paraganglioma is rare, it should be considered in the differential diagnosis of hypertension associated with incidentaloma and/or with unexpected drug-induced blood pressure changes.

References


