The Role of Technetium-99m-Sestamibi Parathyroid Scintigraphy in the Detection and Localization of Parathyroid Adenomas in Patients with Hyperparathyroidism: Comparison with Technetium-Thallium Subtraction Scan and Ultrasonography

Nuri Arslan* Seyfettin Ilgan* Muammer Urhan* Alper Özgür Karaçalıoğlu* İsmail Arslan**
Emel Öztürk* Bengül Günalp* Hikmet Bayhan*

Gülhane Military Medical Academy and Medical Faculty, Ankara
* Department of Nuclear Medicine
** Department of General Surgery

Dual radionuclide imaging using a combination of 201Tl with 99mTc-pertechnetate is recognized as a useful procedure in the preoperative localization of parathyroid adenomas. Recently, 99mTc-MIBI scintigraphy has been introduced as an alternative to subtraction scintigraphy. The purpose of this study was to evaluate the role of 99mTc-MIBI dual-phase (early and late imaging) parathyroid scan in the detection and localization of parathyroid adenomas and to compare the results with subtraction scintigraphy and ultrasonography. Eighteen patients that had suspicious clinical or laboratory findings for hyperparathyroidism were included in this study. 99mTc-MIBI imaging and ultrasonography were performed for all patients prior to surgical exploration. A positive 99mTc-MIBI scan for parathyroid adenoma was defined as an area of increased focal uptake that persisted on late imaging. Nine out of 18 patients underwent subtraction scintigraphy, also. 99mTc-MIBI, ultrasonography and 201Tl/99mTc subtraction scintigraphy showed a sensitivity of 94% (17/18) 88% (16/18), and 66% (6/9), respectively. We obtained concordant results for 5 patients with parathyroid adenoma using any imaging modality. 201Tl subtraction scintigraphy correctly detected a parathyroid adenoma, undetected with both MIBI and ultrasonography. In conclusion, 99mTc-MIBI dual-phase imaging was found more sensitive and accurate for the detection and localization of parathyroid adenomas. 201Tl/99mTc subtraction scintigraphy is considered as a helpful second line imaging modality for patients who have a negative result with 99mTc-MIBI scintigraphy, when there is clinical suspicion of hyperparathyroidism.

KEY WORDS Primary hyperparathyroidism, parathyroid scintigraphy, 99mTc-MIBI, 201Tl/99mTc-pertechnetate subtraction, ultrasonography

Introduction

Primary hyperparathyroidism is characterized by increased synthesis of parathyroid hormone, which produces an elevated serum calcium level and a decline in serum inorganic phosphates. The vast majority of hyperparathyroidism cases are due to single or multiple hyperfunctioning adenomas (80-85%) (1). Different imaging techniques have been used for detection of abnormal parathyroid glands such as ultrasonography (US), computerized tomography, magnetic resonance imaging, and radic
in a range of 15 to 3000 pg/ml. Intra-assay and inter-assay variation was lower than 6% and 6.6% respectively.

Ultrasonography

Thyroid and neck US of all patients was performed with a dedicated unit (GE Medical Systems) using a 7.5 MHz linear probe. Hypoechoogenic or anechoic lesions behind the thyroid gland were considered as enlarged parathyroid adenoma.

99mTc-MIBI Parathyroid Imaging

Planar imaging of the neck and upper portion of the thorax (and mediastinum) was performed by using a large-field-of-view (LFOV) gamma camera equipped with a low energy, high resolution collimator (GE 400 ACT/STARCAM, GE Medical Systems, Milwaukee, WI). Each patient received an intravenous injection of 740 MBq of 99mTc-MIBI (Cardiolite, Du Pont Merck Pharmaceutical Co., N. Billerica, MA). Three sets of images were obtained in the anterior view (10 min/view) with the patient in the supine position, the initial set at 20 min, the second set at 2 hr, and the third set 3 hr after the injection of the tracer. A positive 99mTc-MIBI scan for parathyroid adenoma was defined as an area of increased focal uptake which persisted on late imaging, contrary to the uptake in the normal thyroid tissue which progressively decreases with time (differential washout).

201Tl/99mTc-pertechnetate Dual Radiotracer Parathyroid Imaging

In 9 of the 18 patients, a second radionuclide imaging modality was performed using a dual tracer with a LFOV gamma camera equipped with a low-energy high-resolution collimator. Any thyroxine medication was stopped for at least 3 weeks prior to scintigraphy. Twenty minutes after the subsequent injection of 100 MBq of 99mTc-pertechnetate, 74 MBq of 201Tl was injected. After the injection of 201Tl, planar imaging of the neck and upper portion of the thorax was performed with dual isotope acquisition. All of the images were normalized by equalizing counts per pixel of each image to another 201Tl and 99mTc-pertechnetate images overlapped and a single image was
obtained by using computer subtraction technique. Any area of increased uptake was considered as parathyroid adenoma after the subtraction procedure.

Statistical Analysis

All data are expressed as mean plus or minus one standard deviation. Sensitivity was defined as the number of true positives divided by the sum of true positives and false negatives. Accuracy was defined as the sum of true positives and true negatives divided by the sum of the number of the patient population.

Results

Preoperative serum PTH levels in the 18 patients ranged from 105 to 2000 pg/ml (mean: 480±612; PTH normal range 12-72 pg/ml). Serum calcium levels ranged from 10.1 to 13.9 mg/dl (mean: 11.3±1.02; normal range 8.5-10.4 mg/dl). Serum phosphate levels (Menagent Fosfofix, MENARINI Diagnostics) ranged from 2 to 3.9 mg/dl (mean: 2.87±0.44; normal range 3-4.5 mg/dl).

The mean time interval between the completion of imaging and surgery was 25 days (range of 10-65 days). According to the histopathologic results, 18 patients were found to have solitary parathyroid adenoma. The greatest diameter of the detected parathyroid adenoma ranged from 0.8 to 2.8 cm (mean: 1.9±0.5 cm) according to US findings. 99mTc-MIBI scintigraphy and US correctly identified and localized 17 out of 18 and 16 out of 18 adenomas, with a sensitivity of 94% and 88% respectively.

In the subgroup of 9 patients on whom 201Tl/99mTc scintigraphy was performed as a second radionuclide imaging, 201Tl/99mTc parathyroid scintigraphy and 99mTc-MIBI dual phase imaging correctly localized 6 out of 9 and 8 out of 9 parathyroid adenomas with a sensitivity of 66% and 88%, respectively (Fig. 1-3). In the patient who had a false-negative result with 99mTc-MIBI and US, 201Tl/99mTc subtraction scintigraphy correctly detected and precisely localized a parathyroid adenoma (2.2 x 0.9 cm) in the left lower neck (Fig. 4-5) (Case 8, Table 1). The results of imaging
Figure 4. 99mTc-MIBI parathyroid imaging (planar anterior view) obtained at 20 min (A), and 2 hr (B) and 3 hr (C) after the injection showed normal and relatively uniform thyroid uptake with no evidence of increased tracer accumulation indicating parathyroid adenoma.

Figure 5. 201TI/99mTc subtraction scintigraphy of the thyroid and parathyroids showed increased focal tracer accumulation (short thick arrows) in the left lower neck discordant with 99mTc-MIBI dual phase imaging.

Table 1. Histopathologic diagnosis, lesion size, serum parathormone (PTH) and calcium levels and the results of three different imaging modalities for patients suspicious for hyperfunctioning parathyroid adenoma.

<table>
<thead>
<tr>
<th>Case</th>
<th>PTH (pg/ml)</th>
<th>Ca (mg/dl)</th>
<th>US</th>
<th>201TI/99mTc subtraction scintigraphy</th>
<th>99mTc-MIBI scintigraphy</th>
<th>Histopathologic Diagnosis</th>
<th>Lesion Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>145</td>
<td>10.8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>P. Adenoma</td>
<td>23x12</td>
</tr>
<tr>
<td>2</td>
<td>158</td>
<td>12.4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>P. Adenoma</td>
<td>15x8</td>
</tr>
<tr>
<td>3</td>
<td>2000</td>
<td>10.9</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>P. Adenoma</td>
<td>17x6</td>
</tr>
<tr>
<td>4</td>
<td>718</td>
<td>10.3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>P. Adenoma</td>
<td>13x9</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td>10.6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>P. Adenoma</td>
<td>28x15</td>
</tr>
<tr>
<td>6</td>
<td>182</td>
<td>11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>P. Adenoma</td>
<td>20x12</td>
</tr>
<tr>
<td>7</td>
<td>816</td>
<td>10.8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>P. Adenoma</td>
<td>25x5</td>
</tr>
<tr>
<td>8</td>
<td>524</td>
<td>13.9</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>P. Adenoma</td>
<td>22x9</td>
</tr>
<tr>
<td>9</td>
<td>907</td>
<td>13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>P. Adenoma</td>
<td>21x16</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
<td>10.3</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma+TMPC</td>
<td>28x17</td>
</tr>
<tr>
<td>11</td>
<td>107.8</td>
<td>12.2</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma</td>
<td>20x15</td>
</tr>
<tr>
<td>12</td>
<td>120.8</td>
<td>11.5</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma</td>
<td>13x9</td>
</tr>
<tr>
<td>13</td>
<td>238</td>
<td>12.1</td>
<td>-</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma</td>
<td>11x5</td>
</tr>
<tr>
<td>14</td>
<td>117</td>
<td>11</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma</td>
<td>8x5</td>
</tr>
<tr>
<td>15</td>
<td>120</td>
<td>10.6</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma</td>
<td>23x15</td>
</tr>
<tr>
<td>16</td>
<td>114</td>
<td>10.1</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma</td>
<td>24x8</td>
</tr>
<tr>
<td>17</td>
<td>105</td>
<td>10.7</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma</td>
<td>20x7</td>
</tr>
<tr>
<td>18</td>
<td>150</td>
<td>11.3</td>
<td>+</td>
<td>NP</td>
<td>+</td>
<td>P. Adenoma+CLT</td>
<td>22x17</td>
</tr>
</tbody>
</table>

NP: not performed, +: positive for parathyroid adenoma, -: negative for parathyroid adenoma, CLT: Chronic Lymphocytic Thyroiditis, TMPC: Thyroid Micro Papillary Cancer
modalities, lesion size, serum PTH and calcium levels and histopathologic diagnosis of all patients are presented in Table 1.

The accuracy of 99mTc-MIBI dual-phase imaging, US and 201Tl/99mTc subtraction study in the detection and localization of parathyroid adenomas was found to be 94%, 88%, and 66% respectively.

Discussion

Surgery for primary hyperparathyroidism is successful in 95% of patients, but ectopic glands and anatomic variations in location are causes of surgical failure (11). Localization of hyperfunctioning parathyroid tissue prior to surgery may shorten operation time.

Although, US is found to be performed easily, it has a low sensitivity especially after previous neck surgery due to alterations in neck anatomy (12). Moreover, US is accepted as an operator dependent methodology. 201Tl-chloride has been reported as an agent used to visualize parathyroid glands (13), related to increased cellular density and vascularity of parathyroid adenomas. Although dual radionuclide imaging with 201Tl/99mTc-pertechnetate has shown satisfactory results (6,7,14), many technical aspects of the procedure have not been completely resolved as yet. Patient motion, image misregistration, and intrathyroidal lesions such as adenomas, carcinomas or thyroiditis are the main drawbacks for dual radionuclide imaging. On the other hand, recently administered radiographic contrast material or thyroid hormone may interfere with pertechnetate imaging, and will compromise the use of subtraction techniques.

99mTc-MIBI, with its cationic charge and lipophilicity, is passively transferred across the cell membrane and concentrated in the mitochondria (15). In addition to myocardial perfusion studies (8), it has also been widely used for the detection and localization of hyperfunctioning parathyroid adenomas (9,10,16). It has been speculated that mitochondria-rich oxyphilic cells make a logical target for the prolonged retention of 99mTc-MIBI, usually observed in abnormal parathyroid glands (17).

In our study, the sensitivities obtained with US and 201Tl/99mTc-pertechnetate subtraction scintigraphy were similar to reported series (6,11). In our study, dual-phase 99mTc-MIBI scintigraphy revealed the highest sensitivity and accuracy (94% and 94%) for the detection and localization of abnormal parathyroid glands among the three imaging modalities. These findings are similar to previous reports (11,12,16). The higher sensitivity with 99mTc-MIBI may be partly due to a higher target-to-background ratio, but also to the superior physical characteristics of 99mTc versus 201Tl.

In some patients, dual-phase 99mTc-MIBI imaging may be hampered by an inhomogeneous thyroid wash-out that prevents a clear delineation of the focal tracer retention in the parathyroid adenoma. Moreover, prolonged retention of 99mTc-MIBI may occur in various types of thyroidal lesions such as thyroiditis, adenoma and carcinoma (18, 19). On the other hand, 99mTc-MIBI imaging offers the advantages of being easier to perform and to interpret, and is not affected by patient motion. Furthermore, thyroid hormone substitution or contrast media does not hamper its thyroïd uptake.

In conclusion, the results of our study confirmed that dual-phase 99mTc-MIBI parathyroid imaging and US could be useful in the preoperative detection and localization of parathyroid adenomas. However, in selected cases where the 99mTc-MIBI differential wash-out analysis fails to give a definitive diagnosis, as in one of our patients, it might be valuable to use a thyroid selective agent to subtract thyroid activity in order to improve the sensitivity and accuracy of the parathyroid scintigraphy.

References

