Idiopathic Hypogonadotrophic Hypogonadism Caused by Inactivating Mutations in SRA1

Ayça Ulubay1, L. Damla Kotan2, Charlton Cooper3, Şükran Darcan4, Ian M. Carr5, Samim Özen4, Yi Yan3, Mohammad K. Hamedani3, Fatih Gürbüz2, Eda Mengen2, İhsan Turan2, Gamze Akkuş6, Bilgin Yüksel2, Etienne Leygue3, A. Kemal Topaloğlu2
1Çukurova University Faculty of Medicine, Department of Forensic Medicine, Adana, Turkey
2Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
3University of Manitoba, Manitoba Institute of Cell Biology, Manitoba, Canada
4Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, İzmir, Turkey
5University of Leeds, Institute of Biomedical and Clinical Sciences, Leeds, United Kingdom
6Çukurova University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Adana, Turkey

Objective: What initiates pubertal process in humans and other mammals has remained elusive. We hypothesized that gene(s) taking roles in triggering human puberty may be identified by studying a cohort of idiopathic hypogonadotropic hypogonadism (IHH) cases via autozygosity mapping coupled with whole exome sequencing.

Case: Our studies revealed three independent families in which IHH/delayed puberty was associated with inactivating SRA1 variants. SRA1 was the first gene to be identified to function through its protein as well as noncoding functional ribonucleic acid products. These products act as co-regulators of nuclear receptors including sex steroid receptors as well as SF-1 and LRH-1, the master regulators of steroidogenesis. Functional studies with a mutant SRA1 construct showed a reduced co-activation of ligand-dependent activity of the estrogen receptor alpha, as assessed by luciferase reporter assay in HeLa cells.

Conclusion: Our findings strongly suggest that SRA1 gene function is required for initiation of puberty in humans. Furthermore, SRA1 with its alternative products and functionality may provide a potential explanation for versatility and complexity of puberty.

A Novel Missense Mutation in HSD17B3 Gene in Two 46,XY Siblings with Female External Gelitalia

Hale Tuhan1, Ahmet Anık1, Gönül Çatlı1, Serdar Ceylaner2, Bumin Dündar3, Ece Böber1, Korcan Demir1, Sezer Acar1, Derya Erçal4, Ayhan Abacı1
1Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, İzmir, Turkey
2Intergen Genetic Centre, Ankara, Turkey
3Kapıçelebi University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, İzmir, Turkey
4Dokuz Eylül University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, İzmir, Turkey

Objective: Deficiency of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3), which catalyzes the synthesis of testosterone from Δ4-androstenedione and is encoded by HSD17B3, is a rare cause of 46,XY disorders of sex development (DSD). Up to now, over 30 mutations in HSD17B3 have been reported. To report two siblings with a novel mutation in HSD17B3 gene leading to 17β-HSD3 deficiency.

Case: A 15-year-old female patient was referred because of primary amenorrhea and signs of virilization. The chromosome analysis showed a 46,XY karyotype. Hormonal evaluation revealed a high Δ4-androstenedione level with a low serum testosterone/androstenedione (T/A) ratio. A homozygous missense mutation in HSD17B3 resulting in a premature stop codon (p.Y287) was found. Gonadectomy was performed after the molecular diagnosis and estrogen replacement therapy was initiated. Screening of relevant mutation was performed in remaining family members. The father, mother, and a sibling were heterozygous, while a 12-year-old sibling who was raised as a female was homozygous for the same mutation. Her karyotype was 46,XY as well. Hormonal evaluation revealed a high Δ4-androstenedione level with a low serum T/A ratio. Gonadectomy was performed and estrogen replacement therapy was initiated consequently.

Conclusion: We emphasize that 17β-HSD3 deficiency should be considered in virilized female patients at puberty if the T/A ratio is less than 0.8 and the molecular analysis should be performed in both index case and the family members for precise diagnosis and genetic counselling.