STUDIES ON SOME NEW PYRAZOLO[3,4-c]PYRIDINE DERIVATIVES AS ANTIMICROBIAL AGENTS

Gülhan Turan-ZİTOUNI1*, Ahmet ÖZDEMİR1, Zafer Asım KAPLANCIKLı1, Adile ÇEVİKBAŞ2, Burçak GÜRBÜZ2, Ümran S. GÜRER2

1Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, TURKEY
2Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Haydarpasa-İstanbul, TURKEY

Abstract

The increasing clinical importance of drug-resistant bacterial and fungal pathogens has lent additional urgency to microbiological research and novel antimicrobial compounds development. For this aim, a series of N-{[(Benzhydryl) / (1-phenylethyl)]-2-pyrazolo[3,4-c]pyridin-1-yl acetamide derivatives (3a-m) were synthesized by reacting 2-chloro-N-(benzhydryl)acetamide (1a) / 2-chloro-N-(1-phenylethyl)acetamide (1b) and pyrazolo[3,4-c]pyridine derivatives (2). The chemical structures of the compounds were elucidated by elemental analyses, IR, 1H-NMR, FAB-MS spectral data. Their antimicrobial activities against E. coli (ATCC 11229), S. aureus (ATCC 6538), B. cereus (ATCC 11778), P. mirabilis (ATCC 14153), P. aeruginosa (ATCC 1539), K. pneumoniae (ATCC 4352), C. albicans (ATCC 26555), C. guilliermondii (KUEN 998), C. pseudotropicalis (kefyr) (KUEN 1014), and C. krusei (ATCC 6258) were investigated. The results showed that some of the compounds have slight activity against B. cereus and S. aureus. Whereas, the same compounds did not show any significant antifungal activity against Candida species.

Key words: Pyrazolo[3,4-c]pyridine derivatives, Acetamide, Antimicrobial activity

Antimikrobiyal Ajan Olarak Bazi Yeni Pirazolo[3,4-c]piridin Türevleri Üzerine Çalışmalar

İlaçlara karşı direnç kazanmış patojen bakterilerin ve fungusların klinik önemindeki artış, yeni mikrobiyolojik araştırmalar ve yeni antimikrobiyal ilaçların geliştirilmesi çağımızlarda neden olmuştur. Bu amaçla, 2-kloro-N-(benzhydryl)asetamid (1a) / 2-kloro-N-(1-feniletil)asetamid (1b) ve pirazolo[3,4-c]piridin türevleri (2) reaksiyona sokularak bir seri N-{[(benzhydryl)/(1-feniletil)]-2-pirazolo[3,4-c]piridin-1-il asetamid türevi (3a-m) sentezlennmiştir. Bileşiklerin kimyasal yapıları elemental analiz, IR, 1H-NMR, FAB-MS verileri ile aydınlatılmıştır. Bunların antimikrobiyal aktiviteleri E. coli (ATCC 11229), S. aureus (ATCC 6538), B. cereus (ATCC 11778), P. mirabilis (ATCC 14153), P. aeruginosa (ATCC 1539), K. pneumoniae (ATCC 4352), C. albicans (ATCC 26555), C. guilliermondii (KUEN 998), C. pseudotropicalis (kefyr) (KUEN 1014), and C. krusei (ATCC 6258) susurlarına karşı artırılmıştır. B. cereus ve S. aureus susurlarına karşı bileşiklerin bazıı zayıf derecede aktivite göstermiştir, aynı bileşikler Candida türlerine karşı herhangi bir aktivite göstermemiştir.

Anahtar kelimeler: Pirazolo[3,4-c]piridin türevleri, Asetamid, Antimikrobiyal aktivite

*Correspondence: Tel: +90 222 335 0580/3777, Fax : +90 222 3350750, E-mail: glhantu@gmail.com
INTRODUCTION

In recent years, the number of life-threatening infections caused by multi-drug resistant Gram-positive and Gram-negative pathogen bacteria have reached an alarming level in many countries around the world (1). The modern treatment of these infectious diseases involves administration of multi-drug regimen over a long period of time, which lead to patient noncompliance and rapid emergence of multi-drug resistance strain. The resistance problem demands to search for effective antimicrobial agents against pathogenic microorganisms resistant to current treatment. Moreover, treatment of infectious diseases is more difficult in immunodeficient patients such as those infected with human immunodeficiency virus (HIV). Recent studies showed that the application of appropriate dosage regimen with highly potent antimicrobial agents not only eradicates bacterial growth but also minimizes the probability of resistance constitution. The biochemical basis of both intrinsic and acquired resistance are now known and has contributed considerably towards the design of new entities by rational strategies that can be used to counteract the resistance. The development of new potential drugs, which will be devoid of side-effect profile of currently available drugs, will be one of the possible solutions to treat various infectious diseases with multi-drug treatment over a long period of time (2).

There are two principle approaches to develop a new antimicrobial drug: (i) synthesis of analogues, modifications or derivatives of existing compounds for shortening and improving microbial infection treatment and, (ii) searching new structures, that the pathogen organism has never been presented with before, for the treatment of multi-drug resistant pathogen (3).

To pursue this goal, our research efforts are directed to finding new chemical classes of antimicrobially active agents. The methods of investigation using structure-activity relationships (SAR) enabled us to find some new pharmacophores of the above mentioned activity. Many studies have been performed on heterocyclic systems bearing an acetamide group as a pharmacophore (4-7) and a number of pyrazolopyridine derivatives have been claimed to possess interesting antimicrobial activity properties (8).

In view of these observations, we aimed at the synthesis and antimicrobial evaluation of new pyrazolo[3,4-c]pyridine derivatives.

EXPERIMENTAL

Chemistry

All melting points (m.p.) were determined in open capillaries on a Gallenkamp apparatus (Weiss-Gallenkamp, Loughborough-United Kingdom) and are uncorrected. The purity of the compounds was routinely checked by thin layer chromatography (TLC) using silica gel 60G (Merck, Darmstadt-Germany). Spectroscopic data were recorded with the following instruments: IR; Shimadzu IR-435 spectrophotometer (Shimadzu, Tokyo, Japan); 1H-NMR: Bruker 250 MHz spectrometer (Bruker, Billerica, Massachusetts, USA) in DMSO-d6 using TMS as internal standard; and FAB-MS: VG Quattro Mass spectrometer (Agilent, Minnesota, USA). Elemental analyses were performed with a Leco CHNS-932 (LECO Corporation, Michigan, USA) instrument.

General procedure for 2-chloro-N-(benzhydryl)acetamide (1a) and 2-chloro-N-(1-phenylethyl)acetamide (1b)

The amine (diphenylmethylamine or 1-phenylethylamine) (0.01 mmol) and triethylamine (0.01 mmol) were dissolved in benzene (30 ml) with constant stirring. Later, the mixture was cooled in an ice bath, and chloroacetylchloride (0.01 mmol) was added dropwise with stirring. The reaction mixture thus obtained was further agitated for 1 h at room temperature. The
precipitate which is triethylamine ammonium chloride was filtrated, the solvent was evaporated to dryness under reduced pressure and the products were recrystallized from ethanol.

General procedure of 1H-pyrazolo[3,4-c]pyridine derivatives (2)

1H-pyrazolo[3,4-c]pyridine derivatives (2) used in the synthesis were prepared according to the methods reported in the literature (9).

General procedure of N-[(benzhydryl) / (1-phenylethyl)-2-pyrazolo[3,4-c]pyridin-1-yl acetamide derivatives (3a-m)]

A mixture of (1a-b) (0.01 mol), pyrazolo[3,4-c]pyridine derivatives (2) (0.01 mol), and K$_2$CO$_3$ (0.01 mol) were treated in acetone (50 ml) at room temperature for 8-10 h. The solvent was evaporated until dryness. The residue was washed with water (200 mL) and recrystallized from ethanol (Scheme 1). Some characteristics of the synthesized compounds are shown in Table 1.

![Scheme 1](image)

2-(5-Chloropyrazolo[3,4-c]pyridin-1-yl)-N-(1-phenylethyl)acetamide (3a)

IR (KBr) 3398, 3062, 2965, 2920, 1670, 1596, 1564, 1503, 1420 cm$^{-1}$; 1H-NMR (DMSO-d$_6$, 250 MHz): 1.45 (d, 3H, CH$_3$), 4.90-5.00 (m, 1H, N-CH), 5.35 (s, 2H, COCH$_2$), 7.20-7.40 (m, 5H, Ph), 7.80 and 7.90 (two s, 1H, H-4), 8.20 and 8.50 (two s, 1H, H-3), 8.80 and 8.90 (two d, 1H, NH), 8.95 and 9.05 (two s, 1H, H-7); FAB$^-$-MS: m/z: 314 [M], 315 [M+1], 316 [M+2]; For C$_{16}$H$_{25}$ClN$_4$O, calculated: C, 61.05; H, 4.80; N, 17.80. found: C, 61.12; H, 4.94; N, 17.63%.
Table 1. Some characteristics of the compounds

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R</th>
<th>R_I</th>
<th>R_2</th>
<th>R_3</th>
<th>M.P. (°C)</th>
<th>Yield (%)</th>
<th>Mol. For.</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>CH₃</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>214-216</td>
<td>64</td>
<td>C₁₆H₁₅ClN₄O</td>
<td>314.5</td>
</tr>
<tr>
<td>3b</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>104-106</td>
<td>60</td>
<td>C₁₆H₁₅ClN₄O</td>
<td>314.5</td>
</tr>
<tr>
<td>3c</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>250-252</td>
<td>62</td>
<td>C₁₇H₁₈N₄O₂</td>
<td>310</td>
</tr>
<tr>
<td>3d</td>
<td>CH₃</td>
<td>Cl</td>
<td>Cl</td>
<td>H</td>
<td>226-228</td>
<td>63</td>
<td>C₁₆H₁₄Cl₂N₄O</td>
<td>349</td>
</tr>
<tr>
<td>3e</td>
<td>CH₃</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>192-194</td>
<td>59</td>
<td>C₁₆H₁₄Cl₂N₄O</td>
<td>349</td>
</tr>
<tr>
<td>3f</td>
<td>CH₃</td>
<td>NO₂</td>
<td>Cl</td>
<td>H</td>
<td>208-210</td>
<td>65</td>
<td>C₁₆H₁₄ClN₆O₃</td>
<td>359.5</td>
</tr>
<tr>
<td>3g</td>
<td>Phenyl</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>176-178</td>
<td>58</td>
<td>C₂₁H₁₇ClN₄O</td>
<td>376.5</td>
</tr>
<tr>
<td>3h</td>
<td>Phenyl</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>166-168</td>
<td>61</td>
<td>C₂₁H₁₇ClN₄O</td>
<td>376.5</td>
</tr>
<tr>
<td>3i</td>
<td>Phenyl</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>150-152</td>
<td>60</td>
<td>C₂₁H₁₇BrN₄O</td>
<td>421</td>
</tr>
<tr>
<td>3j</td>
<td>Phenyl</td>
<td>Cl</td>
<td>Cl</td>
<td>H</td>
<td>206-207</td>
<td>63</td>
<td>C₂₁H₁₆Cl₂N₄O</td>
<td>411</td>
</tr>
<tr>
<td>3k</td>
<td>Phenyl</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>210-212</td>
<td>64</td>
<td>C₂₁H₁₆Cl₂N₄O</td>
<td>411</td>
</tr>
<tr>
<td>3l</td>
<td>Phenyl</td>
<td>Br</td>
<td>H</td>
<td>Br</td>
<td>202-204</td>
<td>57</td>
<td>C₂₁H₁₆Br₂N₄O</td>
<td>500</td>
</tr>
<tr>
<td>3m</td>
<td>Phenyl</td>
<td>NO₂</td>
<td>H</td>
<td>Cl</td>
<td>122-124</td>
<td>62</td>
<td>C₂₃H₁₆ClN₆O₃</td>
<td>421.5</td>
</tr>
</tbody>
</table>

2-(7-Chloropyrazolo[3,4-c]pyridin-1-yl)-N-(1-phenylethyl)acetamide (3b)
IR (KBr) 3382, 3065, 2955, 2905, 1665, 1576, 1560, 1410 cm⁻¹; ¹H-NMR (DMSO-d₆, 250 MHz): 1.43 (d, 3H, CH₃), 4.80-5.95 (m, 1H, N-CH), 5.30 (s, 2H, COCH₂), 7.15-7.35 (m, 5H, Ph), 7.75 and 7.85 (two s, 1H, H-4), 8.15 and 8.40 (two s, 1H, H-3), 8.70 and 8.80 (two d, 1H, NH), 8.95 and 9.00 (two s, 1H, H-7); FAB⁺-MS: m/z: 314 [M], 315 [M+1], 316 [M+2], 317 [M+3]; For C₁₆H₁₅ClN₄O, calculated: C, 61.05; H, 4.80; N, 17.80. found: C, 61.14; H, 4.87; N, 17.73%.

2-(7-Methoxypyrazolo[3,4-c]pyridin-1-yl)-N-(1-phenylethyl)acetamide (3c)
IR (KBr) 3392, 3075, 2971, 2928, 1681, 1586, 1554, 1523, 1429 cm⁻¹; ¹H-NMR (DMSO-d₆, 250 MHz): 1.43 (d, 3H, CH₃), 3.95 (s, 3H, OCH₃), 4.80-4.90 (m, 1H, N-CH), 5.20 (s, 2H, COCH₂), 7.15-7.35 (m, 5H, Ph), 7.60 (d, 1H, H-4 J₄-₅ = 5.81 Hz), 7.70 (d, 1H, H-5 J₅-₆ = 5.77 Hz), 8.70 (d, 1H, NH), 8.05 (two s, 1H, H-7); FAB⁺-MS: m/z: 311 [M+1]; For C₂₁H₁₇ClN₄O₂, calculated: C, 65.79; H, 5.85; N, 18.05. found: C, 65.94; H, 5.75; N, 17.84%.

66
2-(3,5-Dichloropyrazolo[3,4-c]pyridin-1-yl)-N-(1-phenylethyl)acetamide (3d)
IR (KBr) 3410, 3082, 2988, 2918, 1674, 1581, 1544, 1523, 1408 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 1.40 (d, 3H, CH\(_3\)), 4.85-4.95 (m, 1H, N-CH), 5.30 (s, 2H, COCH\(_2\)), 7.20-7.40 (m, 5H, Ph), 7.85 (s, 1H, H-4), 8.85 (d, 1H, NH), 9.10 (s, 1H, H-7); FAB\(^{-}\)-MS: m/z: 350 [M+1], 351 [M+2], 353 [M+4]; For C\(_{16}\)H\(_{14}\)Cl\(_2\)N\(_2\)O, calculated: C, 55.03; H, 4.04; N, 16.04. found: C, 55.23; H, 4.10; N, 15.94%.

2-(3,7-Dichloropyrazolo[3,4-c]pyridin-1-yl)-N-(1-phenylethyl)acetamide (3e)
IR (KBr) 3402, 3072, 2961, 2917, 1563, 1528, 1512, 1413 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 1.45 (d, 3H, CH\(_3\)), 4.85-4.95 (m, 1H, N-CH), 5.45 (s, 2H, COCH\(_2\)), 7.20-7.40 (m, 5H, Ph), 7.70 and 7.80 (two s, 1H, H-4), 8.00 and 8.15 (two s, 1H, H-5), 8.80 and 9.00 (two d, 1H, NH); FAB\(^{-}\)-MS: m/z: 350 [M+1], 351 [M+2], 353 [M+4]; For C\(_{16}\)H\(_{14}\)Cl\(_2\)N\(_2\)O, calculated: C, 55.03; H, 4.04; N, 16.04. found: C, 55.14; H, 3.97; N, 16.17%.

2-(5-Chloro-3-nitropyrazolo[3,4-c]pyridin-1-yl)-N-(1-phenylethyl)acetamide (3f)
IR (KBr) 3415, 3098, 2965, 2930, 1671, 1596, 1514, 1500, 1425 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 1.40 (d, 3H, CH\(_3\)), 4.90-5.00 (m, 1H, N-CH), 5.65 (s, 2H, COCH\(_2\)), 7.20-8.50 (m, 7H, aromatic protons), 8.95 (d, 1H, NH); FAB\(^{-}\)-MS: m/z: 359 [M], 360 [M+1], 361 [M+2]; For C\(_{16}\)H\(_{14}\)Cl\(_2\)N\(_2\)O, calculated: C, 53.42; H, 3.92; N, 19.47. found: C, 53.38; H, 3.94; N, 19.42%.

N-Benzhydryl-2-(5-chloropyrazolo[3,4-c]pyridin-1-yl)acetamide (3g)
IR (KBr) 3425, 3034, 2995, 2957, 1578, 1592, 1574, 1515, 1416 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 5.45 (s, 2H, COCH\(_2\)), 6.10-6.20 (m, 1H, N-CH), 7.20-7.40 (m, 10H, Ph), 7.85 and 7.90 (two s, 1H, H-4), 8.25 and 8.55 (two s, 1H, H-3), 9.00 and 9.15 (two d, 1H, NH), 9.35 and 9.45 (two s, 1H, H-7); FAB\(^{-}\)-MS: m/z: 376 [M], 377 [M+1], 378 [M+2]; For C\(_{21}\)H\(_{17}\)Cl\(_2\)N\(_2\)O, calculated: C, 66.93; H, 4.55; N, 14.87. found: C, 66.82; H, 4.67; N, 14.69%.

N-Benzhydryl-2-(7-chloropyrazolo[3,4-c]pyridin-1-yl)acetamide (3h)
IR (KBr) 3431, 3024, 2985, 2953, 1672, 1584, 1572, 1505, 1409 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 5.35 (s, 2H, COCH\(_2\)), 6.05-6.15 (m, 1H, N-CH), 7.15-7.35 (m, 10H, Ph), 7.80 and 7.85 (two s, 1H, H-4), 8.15 and 8.45 (two s, 1H, H-3), 9.05 and 9.15 (two d, 1H, NH), 9.30 and 9.40 (two s, 1H, H-7); FAB\(^{-}\)-MS: m/z: 376 [M], 377 [M+1], 378 [M+2], 379 [M+3]; For C\(_{21}\)H\(_{17}\)Cl\(_2\)N\(_2\)O, calculated: C, 66.93; H, 4.55; N, 14.87. found: C, 66.89; H, 4.67; N, 14.67%.

N-Benzhydryl-2-(7-bromopyrazolo[3,4-c]pyridin-1-yl)acetamide (3i)
IR (KBr) 3428, 3048, 3007, 2955, 1675, 1591, 1534, 1505, 1426 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 5.50 (s, 2H, COCH\(_2\)), 6.15-6.20 (m, 1H, N-CH), 7.25-8.70 (m, 13H, aromatic protons), 9.40 (d, 1H, NH); FAB\(^{-}\)-MS: m/z: 422 [M+1], 423 [M+2]; For C\(_{21}\)H\(_{17}\)Br\(_2\)N\(_2\)O, calculated: C, 59.87; H, 4.07; N, 13.30. found: C, 59.89; H, 4.01; N, 13.26%.

N-Benzhydryl-2-(3,5-dichloropyrazolo[3,4-c]pyridin-1-yl)acetamide (3j)
IR (KBr) 3419, 3059, 2988, 2932, 1674, 1597, 1571, 1502, 1436 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 5.40 (s, 2H, COCH\(_2\)), 6.10-6.15 (m, 1H, N-CH), 7.25-7.40 (m, 10H, Ph), 7.90 (s, 1H, H-4), 9.10 (s, 1H, H-7), 9.35 (d, 1H, NH); FAB\(^{-}\)-MS: m/z: 411 [M], 412 [M+1], 413 [M+2], 415 [M+4]; For C\(_{21}\)H\(_{16}\)Cl\(_2\)N\(_2\)O, calculated: C, 61.33; H, 3.92; N, 13.62. found: C, 61.12; H, 3.82; N, 13.83%.

N-Benzhydryl-2-(3,7-dichloropyrazolo[3,4-c]pyridin-1-yl)acetamide (3k)
IR (KBr) 3442, 3049, 2958, 2922, 1670, 1598, 1574, 1508, 1433 cm\(^{-1}\); \(^1\)H-NMR (DMSO-\(d_6\), 250 MHz): 5.50 (s, 2H, COCH\(_2\)), 6.10-6.20 (m, 1H, N-CH), 7.20-7.45 (m, 10H, Ph), 7.65 and 7.80 (two d, 1H, H-5 J\(_{5,5}\) = 5.75 Hz), 8.00 and 8.20 (two d, 1H, H-5 J\(_{5,5}\) = 5.80 Hz), 9.15, 9.30,
Microbiology

Agar well diffusion method was used in the antimicrobial activity tests. Tryptic Soy Broth (TSB) and Tryptic Soy Agar (TSA) and the cation-adjusted Mueller Hinton Broth (CAMHB) for the bacteria, Sabouraud Dextrose Broth (SDB), Potato Dextrose Agar (PDA) for the yeasts were used as media. The bacteria and the yeasts used in this research are shown in Table 2.

Table 2. Used microorganisms.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Yeasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus ATCC 6538</td>
<td>Candida albicans ATCC 26555</td>
</tr>
<tr>
<td>Escherichia coli ATCC 11229</td>
<td>Candida guillermondii KUEN 998</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 1539</td>
<td>Candida pseudotropicalis (kefyr) KUEN 1014</td>
</tr>
<tr>
<td>Proteus mirabilis ATCC 14153</td>
<td>Candida krusei ATCC 6258</td>
</tr>
<tr>
<td>Klebsiella pneumoniae ATCC 4352</td>
<td></td>
</tr>
<tr>
<td>Bacillus cereus ATCC 11778</td>
<td></td>
</tr>
</tbody>
</table>

Agar Well Diffusion Method

The compounds were dissolved in DMSO (500 μl). Bacteria suspensions were prepared equal to the turbulence of Mc Farland 0.5 standart (1-2 x 10^8 cfu/ml) and yeast suspensions were prepared equal to the turbulence of Mc Farland 1 standart (3 x 10^8 cfu/ml). 0.1 ml (100 μl) microorganism suspensions were cultivated on agar medium. After that, 6 mm in diameter were cut in agar plate. Then, 0.05 ml (50 μl) was taken from the stock suspensions of compounds and put into the wells. Thus, the final concentrations of compounds suspensions were decreased in 1/10 ratio.

The solvent used for the compounds is dimethylsulphoxide (DMSO). The standart antibacterial agent meropenem (10μg/50μl) and the standart antifungal agent fluconazole (100μg/50 μl) were tested in the same manner as control. All the culture plates were incubated at 35°C, 16-18 hours for bacteria and 18-24 hours for Candida species. After the incubation, the diameter of zone inhibition was measured in milimeters. Each test was performed twice and the average of the results was taken (10-11). DMSO neither affected the growth of any of the microorganisms nor Candida species. The standart antibacterial agent (meropenem) inhibited

and 9.45 (three d, 1H, NH); FAB-MS: m/z: 411 [M], 412 [M+1], 413 [M+2], 415 [M+4]; For C_{21}H_{16}Cl_{2}N_{4}O, calculated: C, 61.33; H, 3.92; N, 13.62. found: C, 61.12; H, 3.82; N, 13.83%.

N-Benzhydryl-2-(3,7-dibromopyrazolo[3,4-c]pyridin-1-yl)acetamide (3l)
IR (KBr) 3426, 3058, 3018, 2965, 1672, 1579, 1573, 1509, 1416 cm\(^{-1}\);
\(^1\)H-NMR (DMSO-d\(_6\), 250 MHz): 5.65 (s, 2H, COCH\(_2\)), 6.05-6.15 (m, 1H, N-CH\(_3\)), 7.20-7.50 (m, 10H, Ph), 7.60 and 7.70 (two d, 1H, J\(_{4-5}\) = 5.73 Hz), 7.95 and 8.15 (two d, 1H, J\(_{5-4}\) = 5.68 Hz), 9.15, 9.35, and 9.40 (three d, 1H, NH); FAB-MS: m/z: 501 [M+1], 502 [M+2], 504 [M+4]; For C_{21}H_{16}Br_{2}N_{4}O, calculated: C, 50.43; H, 3.22; N, 11.20. found: C, 50.68; H, 3.27; N, 11.32%.

N-Benzhydryl-2-(7-chloro-3-nitropyrazolo[3,4-c]pyridin-1-yl)acetamide (3m)
IR (KBr) 3438, 3099, 2970, 2945, 1678, 1586, 1534, 1520, 1445 cm\(^{-1}\);
\(^1\)H-NMR (DMSO-d\(_6\), 250 MHz): 5.55 (s, 2H, COCH\(_2\)), 6.15-6.25 (m, 1H, N-CH\(_3\)), 7.35-7.45 (m, 10H, Ph), 7.95 (s, 1H, H-4), 9.15 (s, 1H, H-7), 9.25 (d, 1H, NH); FAB-MS: m/z: 422 [M+1], 423 [M+2], 425 [M+4]; For C_{21}H_{16}ClN_{5}O_{3}, calculated: C, 59.79; H, 3.82; N, 16.60. found: C, 59.68; H, 3.78; N, 16.73%.
the growth of the bacteria. On the other hand, the standard antifungal agent (fluconazole) inhibited the growth of Candida species.

Macrodilution Tube Broth Method

Steril test tubes used to conduct the test. A control tube containing broth without antimicrobial agent used for each organism tested. The compounds were dissolved in (DMSO) to a final concentration of 100 mg/ml and sterilized by filtration through a membrane filter with 0.45 μm diameter. The final two-fold dilutions of compounds prepared in the cation-adjusted Mueller Hinton Broth (CAMHB) and the concentrations of the compounds were prepared in 10 tubes (12-13).

A standardized inoculum for the macrodilution broth method prepared by growing microorganisms to the turbulence of the 0.5 Mc Farland standard in broth. Then the 0.5 Mc Farland suspension (1x10⁶ cfu/ml) diluted 1:10 to yield 10⁷ cfu/ml. Within 15 minutes 0.5 ml of the adjusted inoculum added to each tube already containing 0.5 ml of extract in the dilution series and a positive control tube containing only broth and each tube was mixed. The inoculated macrodilution tubes incubated at 35°C for 16 to 20 hours in the incubator. After incubation the amount of growth in the tubes containing the compounds and antibiotic compared with the amount of growth in the control tubes (no compound and antibiotics) used in each set of tests when determining the growth end points. Meropenem (512 μg/ml) were used as positive reference standards to determine the sensitivity of one strain in each microbial species was tested. Each assay in this experiment was repeated twice (12-13). The MIC for each compound was read at the lowest concentration at which there was no detectable growth. The results are shown in Table 3.

Table 3. MIC values μg/mL of compounds.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>3b</th>
<th>3d</th>
<th>3g</th>
<th>3h</th>
<th>3i</th>
<th>3j</th>
<th>3k</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>>50000</td>
<td>>50000</td>
<td>-</td>
<td>6250</td>
<td>>50000</td>
<td>>50000</td>
<td><0.0625</td>
</tr>
<tr>
<td>B</td>
<td>6250</td>
<td>-</td>
<td>-</td>
<td>>50000</td>
<td>3125</td>
<td>-</td>
<td>-</td>
<td><0.0625</td>
</tr>
</tbody>
</table>

A: Staphylococcus aureus ATCC 6538, B: Bacillus cereus ATCC 11778; Ref: Meropenem

RESULTS AND DISCUSSION

In the present work, N-(benzhydryl)-2-chloroacetamide (1a) and 2-chloro-N-(1-phenylethyl)acetamide (1b) was prepared by reacting diphenylmethylamine and 1-phenylethylamine with chloroacetyl chloride in accordance with the method described in the literature (14-15).

N-(Benzhydryl) / (1-phenylethyl)-2-pyrazolo[3,4-c]pyridin-1-yl acetamide derivatives (3a-m) were synthesized by reacting (1a-b) and pyrazolo[3,4-c]pyridine derivatives (2). The chemical structures of the compounds 3a-m were confirmed by elemental analyses, IR, ¹H-NMR, FAB-M-S spectral data.

IR data were very informative. In the IR spectra, some significant stretching bands due to, N-H, C=O, C=N and C=C were at 3382-3442 cm⁻¹, 1670-1681 cm⁻¹, and 1408-1598 cm⁻¹, respectively. In the ¹H NMR spectra, the signal due to COCH₂ methylene protons, present in all compounds, appeared at 5.20-5.65 ppm as singlets. The signals due to N-CH proton appeared at 4.80-6.20 ppm as multiplets. The NH proton was observed at 8.70-9.45 ppm as a doublet, two doublet, and three doublet. It could be commented that because of the different structural conformations the NH protons appeared as a doublet, two doublet, and three doublet. All the
other aromatic and aliphatic protons were observed at expected regions. The mass spectra (FAB-MS) of compounds showed [M+1] peaks, in agreement with their molecular formula.

All of the compounds were evaluated for their antimicrobial properties. While none of the compounds showed antimicrobial activity against *Escherichia coli* (ATCC 11229), *Proteus mirabilis* (ATCC 14153), *Pseudomonas aeruginosa* (ATCC 1539), *Klebsiella pneumoniae* (ATCC 4352), *Candida albicans* (ATCC 26555), *Candida guilliermondii* (KUEN 998), *Candida pseudotropicalis* (kefyr) (KUEN 1014), and *Candida krusei* (ATCC 6258), some of (3b and 3i) them showed poor antimicrobial activities against *Staphylococcus aureus* (ATCC 6538), *Bacillus cereus* (ATCC 11778). In the series the compounds 3b, 3h, and 3i showed antibacterial activity against *Bacillus cereus* (3b zone diameter: 6 mm, MIC value: 6250 μg/ml, 3h zone diameter: 2 mm, MIC value: > 50000 μg/ml, and 3i zone diameter: 9 mm, MIC value: 3125 μg/ml). The compounds 3d, 3g, 3i, 3j, and 3k also showed antibacterial activity against *Staphylococcus aureus* (3d zone diameter: 4 mm, MIC value > 50 000 μg/ml, 3g zone diameter 3 mm, MIC value > 50 000 μg/ml, 3i zone diameter: 9 mm, MIC value: 6250 μg/ml, 3j zone diameter: 8 mm, MIC value > 50 000 μg/ml, 3k zone diameter: 3 mm, MIC value > 50 000 μg/ml), Whereas, the same compounds did not show any significant antifungal activity against *Candida* species. In comparison with meropenem is found to be more effective than the compounds against *Bacillus cereus* (zone diameter: 28 mm, MIC value <0.0625 μg/ml) and *Staphylococcus aureus* (zone diameter: 28 mm, MIC value <0.0625 μg/ml) Table 3-4.

Table 4. Zone diameter (mm) of compounds.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>3b</th>
<th>3d</th>
<th>3g</th>
<th>3h</th>
<th>3i</th>
<th>3j</th>
<th>3k</th>
<th>Meropenem</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
</tbody>
</table>

A: *Staphylococcus aureus* ATCC 6538, B: *Bacillus cereus* ATCC 11778

MIC: Minimal Inhibitory Concentration; -: No inhibition

CONCLUSION

The present study describes the synthesis of thirteen N-[(benzhydryl) / (1-phenylethyl)]-2-pyrazolo[3,4-c]pyridin-1-yl acetamide derivatives. Their antimicrobial activities have been evaluated. The results showed that some of the compounds have slight activity against *Bacillus cereus* and *Staphylococcus aureus*. Whereas, the same compounds did not show any significant antifungal activity against *Candida* species.

REFERENCES

Received: 16.05.2008
Accepted: 03.12.2008