ANTIMICROBIAL ACTIVITY OF SOME PLANTS USED IN FOLK MEDICINE IN TURKEY

Alev TOSUN¹, Özlem BAHADI⁰, Nurten ALTANLAR²

¹Ankara University, Faculty of Pharmacy, Department of Pharmacognosy
06100 Tandoğan, Ankara, TURKEY
²Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology,
06100 Tandoğan, Ankara, TURKEY

Abstract

A preliminary antimicrobial activity screening of some medicinal plants collected from Idris Mountain in Ankara-Turkey, were evaluated. Methanol (80 %) extracts were prepared after exhausted with ethyl acetate from aerial parts of 15 plants used in Turkish folk medicine. In order to examine antimicrobial activity of the methanol extracts, the disc diffusion method was used against the tested microorganisms. The inhibition zone diameter was determined for each extract. All of the extracts were found to be active against yeast, and only Allium rotundum L. and Potentilla recta L. showed antibacterial activity.

Key Words: Antimicrobial activity; Folk medicine; Disc diffusion method; Turkey

Türkiye’de Kullanılan Halk İlaçları Bazı Bitkilerin Antimikrobiyel Aktivitesi

Anahtar Kelimeler: Antimikrobiyel aktivite; Halk tibbi; Disk difüzyon metodu; Türkiye

*Corresponding author: Tel.:+90 312 212 60 05; Fax: +90 312 213 10 81
e-mail: alevtosun@yahoo.com

A part of the research was presented in the 4th International Congress of Ethnobotany (ICEB-2005). “Ethnobotany: At the Junction of the Continents and the Disciplines.”August 21-26, Istanbul
INTRODUCTION

During the last decade, the use of traditional medicine has expanded globally and is gaining popularity both in poor developing countries and countries which have conventional medicine in their national health care system (1). Plant species that used in folk medicine have been the centre of interest because of containing active compounds or their active extracts, therefore natural compounds from medicinal plants used as source of medicine in all cultures for that may give a new antimicrobial agent (1-4).

Discovery of antimicrobial drugs is important for the control of bacterial infections for some pathogens rapidly become resistant to many of established antibiotics. Studies about biological activities of plants that used in folk medicine have increased. Same as screening studies for biological activities have been recently increased on plants that have traditional usage in Turkey, where traditional medicine seems to be common like other developing countries (5). Turkish Flora has one of the most extensive floras in continental Europe (6), with more than 9000 flowering plant species (7). The flora of İdris Mountain has very large vegetation with the endemism (8). Previously, there are lot of antimicrobial activity studies performed on some species regarding selected species from İdris Mountain.

The genus Allium comprises more than 141 species in Flora of Turkey (9). The genus is also well known in folk medicine. Various reports regarding the Allium species concern about antibacterial activities were released up to now, including their essential oils (10-18).

Flowers of Anthemis cotula, flowers and leaves of Anthemis scariosa (2, 19) and essential oil of Anthemis xylopoda exhibited antimicrobial activity (20). Anthemis nobilis essential oil showed anti-Candida activity (21).

Sanguinarine, a benzophenanthridine alkaloid derivative in Fumaria species, has been shown to possess antimicrobial activity (22).

Root, stem, leaf and fruit extracts of Glaucium flavum showed antibacterial activity (23). Glaucium oxylobum exhibited antifungal activity. The activity is attributed to some alkaloids, such as diconetine, glaucine, protopine and -allocryptopine (24).

Inula viscosa has antimicrobial activity (25). Maoz and Neeman (26) showed that levaes Inula viscosa inhibited Candida albicans.

Also, several antibacterial activity studies also were performed on Phlomis species (27, 28, 29).
The antifungal activity was investigated on *Sedum oxypetalum* (30) in a recent study.

Sideritis curvidens and *Sideritis lanata* essential oils showed antibacterial activity and their antibacterial activities were found to be more than tested reference antibiotics (31).

A large number of reports concerning the antibacterial evaluation of *Thymus* species can be found in the literature. These studies are focused on essential oil of this genus especially (32-41).

In the current study, we report the antimicrobial activities of extracts from 15 medicinal plants collected from İdris Mountain with very rich vegetation located in northeast of Ankara (8). These selected plants, *Allium rotundum* L., *Anthemis tinctoria* L., *Centranthus longiflorus* Stev., *Digitalis lamarckii* Ivan, *Fumaria asepala* Boiss., *Glaucium grandiflorum* Boiss.& Huet ssp. *grandiflorum*, *Inula britannica* L., *Malabaila secacaule* Banks & Sol., *Phlomis armeniaca* Willd., *Potentilla recta* L., *Sedum acre* L., *Sideritis galatica* Bornm., *Thymus sipyleus* Boiss., *Zosima absinthifolia* (Vent.) Link., were evaluated for their in vitro antimicrobial activity. Some of them are reported for the first time for their antibacterial activity in this study.

The selected plants for this study, and their traditional usages in Turkey as shown (Table 1) (42).
Table 1: Selected plant species and their traditional usage

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Plant Family</th>
<th>AEF No</th>
<th>Traditional name</th>
<th>Traditional uses for genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium rotundum</td>
<td>Liliaceae</td>
<td>23155</td>
<td>Körmen</td>
<td>antiseptic, antibacterial, diuretic, hypotensive, wound healer, laxative, cardioactive</td>
</tr>
<tr>
<td>Anthemis tinctoria</td>
<td>Asteraceae</td>
<td>23168</td>
<td>Boyacı papatya, sănăt</td>
<td>stimulant, emmenagogue, anti-flatulence and natural dye</td>
</tr>
<tr>
<td>Centranthus longiflorus</td>
<td>Valerianaceae</td>
<td>23165</td>
<td>Kırmızı kantaron, kırmızı mahmuz çiçeği</td>
<td>sedative and hypnotic. C. longiflorus used as C. ruber</td>
</tr>
<tr>
<td>Digitalis lamarckii</td>
<td>Scrophulariaceae</td>
<td>23164</td>
<td>Doğu yüksütkotu</td>
<td>No report</td>
</tr>
<tr>
<td>Fumaria asepal</td>
<td>Papaveraceae</td>
<td>23163</td>
<td>Şahtereotu</td>
<td>sedative, diuretic, hypotensive and weight reducing</td>
</tr>
<tr>
<td>Glaucium grandiflorum var. grandiflorum</td>
<td>Papaveraceae</td>
<td>23161</td>
<td>Boynuzlu gelincik</td>
<td>narcotic, expectorant, insecticide, bradycardiac</td>
</tr>
<tr>
<td>Inula britannica</td>
<td>Asteraceae</td>
<td>23166</td>
<td>Andızotu</td>
<td>diuretic, expectorant, choleric, wound healer, appetizing, antihelmintic and tonic</td>
</tr>
<tr>
<td>Malabaila secacul</td>
<td>Apiaceae</td>
<td>23154</td>
<td>----</td>
<td>No report</td>
</tr>
<tr>
<td>Phlomis armeniaca</td>
<td>Lamiaceae</td>
<td>23167</td>
<td>Ballık otu, şalba, çalba, şalvarotu</td>
<td>stimulant like sage</td>
</tr>
<tr>
<td>Potentilla recta</td>
<td>Rosaceae</td>
<td>23157</td>
<td>Beşparmakotu</td>
<td>constipation, antipyretic and tonic</td>
</tr>
<tr>
<td>Sedum acre</td>
<td>Crassulaceae</td>
<td>23159</td>
<td>Acıbdamkörü, kayakörü</td>
<td>diuretic, laxative and wound healer (S. acre; diuretic and laxative)</td>
</tr>
<tr>
<td>Sideritis galatica</td>
<td>Lamiaceae</td>
<td>23156</td>
<td>Dağçayı</td>
<td>appetizing, carminative</td>
</tr>
<tr>
<td>Thymus sipyleus</td>
<td>Lamiaceae</td>
<td>23160</td>
<td>Nemamulotu, sater</td>
<td>sedative, antiseptic, tonic, antihelmintic, for stomach and as a spice and essential oil used for antihelmintic, antiseptic and cholagogue</td>
</tr>
<tr>
<td>Zosima absinthifolia</td>
<td>Apiaceae</td>
<td>23162</td>
<td>----</td>
<td>No report</td>
</tr>
</tbody>
</table>
EXPERIMENTAL

Material

Allium rotundum L., Anthemis tinctoria L., Centranthus longiflorus Stev., Digitalis lamarckii Ivan, Fumaria asepala Boiss., Glaucium grandiflorum Boiss.& Huet ssp. grandiflorum, Inula britannica L., Malabaila secacaul Banks & Sol., Phlomis armeniaca Willd., Potentilla recta L., Sedum acre L., Sideritis galatica Borm., Thymus sipyleus Boiss., Zosima absinthifolia (Vent.) Link. were collected from different localities of the Idris Mountain placed in north east of Ankara, in July 2004. All of the species were identified by H. Duman from Gazi University. Voucher specimens were deposited at the Herbarium of the Faculty of Pharmacy of Ankara University (AEF). The plants which tested for their antimicrobial activity were shown in (Table 1).

In this study, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 23556, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida glabrata (isolate) were used as test microorganisms (Table 2). The strains were taken from The Refik Saydam Hygiene Center.

Extraction

Air-dried and powdered plant materials (10 g) were extracted with magnetic stirrer at room temperature initially ethyl acetate, then methanol (80%) for 24 h. The methanol extracts were filtered and evaporated in vacuum at not more than 40 C, and then they were used for antimicrobial activity studies.

Determination of Antimicrobial Activities

The disk-diffusion method was used as a screening test for antimicrobial activity (43). Twenty milliliters of the Mueller-Hinton Agar (Oxoid) for bacteria, Sabouraud Dextrose Agar (Oxoid) for yeast were poured into 9-cm sterile petri dishes. A suspension containing 10^8 cfu/ml bacteria, 10^6 cfu/ml yeast was spread on the plates of Mueller-Hinton Agar, Sabouraud Dextrose Agar respectively.

The residues obtained by the evaporation of the extracts dissolved in DMSO (dimethylsulfoxide) to obtain 10 mg/mL concentration separately in order to prepare the test solutions in concentration of 10 mg/mL each. Sterile paper disks in 6 mm diameter (Schleicher & Shüll No. 2668, Germany) were impregnated with these solutions with the capacity of 20μL. These impregnated disks were applied on solid agar medium in petri dishes by pressing slightly. After the incubation periods, inhibition zones were measured and compared with that of the references. These experiments were carried out in duplicate.
The plant extracts, bacteria, fungus and standard antibiotics disks used in this study were shown in (Table 2).

RESULTS AND DISCUSSION

This paper reports the first attempt to study antimicrobial activity of the plants that grow in Idris Mountain. The selected plants have also traditional usage for different purpose. Moreover, they have some biological activities that were reported in the scientific literature.

The inhibition zones of methanol extracts of species are given in (Table 2).

Table 2: Antimicrobial activities of tested plant extracts

<table>
<thead>
<tr>
<th>Material</th>
<th>Diameter of Inhibition Zone (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus ATCC 25923</td>
</tr>
<tr>
<td>Allium rotonudum L.</td>
<td>-</td>
</tr>
<tr>
<td>Anthemis tinctoria L.</td>
<td>-</td>
</tr>
<tr>
<td>Centranthus longiflorus Stev.</td>
<td>-</td>
</tr>
<tr>
<td>Digitalis lamarcckii Ivan</td>
<td>-</td>
</tr>
<tr>
<td>Fumaria asepala Boiss.</td>
<td>-</td>
</tr>
<tr>
<td>Glaucium grandiflorum Boiss. & Huet var. grandiflorum</td>
<td>-</td>
</tr>
<tr>
<td>Inula britannica L.</td>
<td>-</td>
</tr>
<tr>
<td>Malabaila seacul Banks & Sol.</td>
<td>-</td>
</tr>
<tr>
<td>Phlomis armeniaca Willd.</td>
<td>-</td>
</tr>
<tr>
<td>Potentilla recta L.</td>
<td>15</td>
</tr>
<tr>
<td>Sedum acre L.</td>
<td>-</td>
</tr>
<tr>
<td>Sideritis galatica Hornm.</td>
<td>-</td>
</tr>
<tr>
<td>Thamus sipleus Boiss.</td>
<td>-</td>
</tr>
<tr>
<td>Zosima absinithifolia (Vent.)</td>
<td>-</td>
</tr>
<tr>
<td>Link</td>
<td>-</td>
</tr>
<tr>
<td>Cephaloxine (30 μg)</td>
<td>20</td>
</tr>
<tr>
<td>Gentamycin (30 μg)</td>
<td>-</td>
</tr>
<tr>
<td>Fluconazole (25 μg)</td>
<td>0</td>
</tr>
</tbody>
</table>

(-): No activity
θ: Not tested

As shown in Table 2; all of the plant extracts all of the plant extracts showed moderate activity especially on fungus. However, the extract of the plants were found weakly active against bacteria strains. Only *Allium rotonudum* showed moderate antibacterial activity on *B. subtilis*. Also, the extract of *Allium rotonudum* showed antifungal activity on all of the tested yeast strains. *Anthemis tinctoria* exhibited antifungal activity on *C. albicans* and *C. krusei*. Antimicrobial activity of *Potentilla recta* were demonstrated against *S. aureus*, *E. coli*, *C. albicans* and *C. krusei*. *Fumaria asepala*, *Sedum acre*, *Sideritis galatica*, *Thamus sipleus*, *Zosima absinithifolia*, *Centranthus longiflorus* exhibited antifungal effect on *C. albicans* and *C. krusei*, and *Glaucium grandiflorum var grandiflorum*, *Malabaila seacul* and *Digitalis larzarkii* extracts have antifungal activity only
against *C. krusei*. In previous studies, *Allium cepa* and *Allium sativum* have found to be active against *S. aureus* (18) and *Allium sativum* has shown activity against *C. albicans* (17). Similarly *Sedum oxfordum* showed antifungal activity on *C. albicans* (30), and *Glaucium oxylobum* against some fungus strains (24).

Antimicrobial activity screening was performed on these selected plants from flora of Idris mountain in this study for evaluation of antimicrobial activity potential. The results of our study were supported by previous studies and exhibited similarities with the other studies.

REFERENCES

34. Nguefack, J., Budde, B.B., Jakobsen, M., “Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane of

received: 29.03.2006
accepted:18.07.2006