who haven’t participated, declared that they haven’t heard about the congress or they weren’t invited to the congress/education. As a reason for their not participating, 9 technologists (20%) declared that they do not have time because of the workload and 3 technologists (7%) couldn’t participate because of economic reasons. The distribution of needs of the technologists for education are; 25 (32%) radiation safety, 14 (18%) imaging techniques and criteria, 8 (10%) up-to-date information, 7 (9%) employee rights, 3 (4%) patient-technologist relations. When we evaluated the opinions and the suggestions of the participants, it appeared that 57% wants free participation in congress and educational activities. 36% of the participants wished eliminating the shortage of staff and improvement of working conditions.

Conclusion: It’s thought that technologists should be informed about congresses and educational activities in due time and their participation should be encouraged. Besides, technologists should acquire up to date information about imaging techniques and criteria, radiation safety and employee rights. As a result, patient-technologist cooperation will be improved and the efficiency of nuclear medicine techniques will increase.

Key words: Education, nuclear medicine, technologist

Preferred Presentation Type: Poster Presentation

In Vitro Activities of Moxifloxacin, 127I-Moxifloxacin and 131I-Moxifloxacin Against Staphylococcus Aureus Biofilms

Hasan Demiroğlu¹, Uğur Avcıbaşı¹, Serhan Sakarya², Perihan Ünak³

¹Celal Bayar University Faculty of Arts and Science, Department of Chemistry, Manisa, Turkey
²Adnan Menderes University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Aydın, Turkey
³Ege University Faculty of Medicine, Institute of Nuclear Sciences, Department of Nuclear Applications, İzmir, Turkey

Abstract

Objective: The aim of the study was to investigate the antimicrobial effect of Moxifloxacin (MXF), radio (Na¹³¹I) and cold (K¹²⁷I) iodinated MXF on methicillin susceptible Staphylococcus aureus ATCC 35556 (MSSA) biofilms.

Methods: MXF was labeled with Na¹³¹I using the iodogen method. The optimum radiodination conditions for ¹³¹I-MXF was determined by thin-layer radio chromatography studies. Thin-layer radio chromatography (TLRC) chromatograms were obtained by using Cyclone Plus Storage Phosphor System. The MICs of MXF, ¹²⁷I-MXF and ¹³¹I-MXF were determined using the microdilution broth method according to CLSI criteria. Time kill curves were performed over 24 h using an inoculum of 2×10⁵ (CFU/mL). Biofilms were grown in microtitre plates, dyed with crystal violet and the mean optical density (OD₆₃₀) was used for quantification. Biofilms were incubated MXF, ¹²⁷I-MXF and ¹³¹I-MXF at various concentration (0.03 to 64 µg/mL).

Results: MXF was labeled with ¹³¹I iodogen method. ¹³¹I-MXF was obtained with high a yield 95±3%. The MIC values for MXF, ¹²⁷I-MXF and ¹³¹I-MXF was 0.06 µg/µL. Bactericidal activity was demonstrated at 0.25 µg/mL 4 hour for MXF, ¹²⁷I-MXF and ¹³¹I-MXF. At MIC levels, MXF, ¹²⁷I-MXF and ¹³¹I-MXF was not showed a marked reduction of metabolic activity in the S. aureus biofilm. The ODs of biofilm after incubation with an increasing antibiotic concentration were significantly lower than the ODs of biofilms without antibiotic p≤0.05. The radiolabeled MXF was most effective than MXF, ¹²⁷I-MXF in reducing the number of bacteria in biofilm. After 24 h incubation Log₁₀ CFU/mL values for 32 µg/mL antibiotic concentration: Control, MXF, ¹²⁷I-MXF and ¹³¹I-MXF were 9.5, 4.3, 4.8 and 3.1, respectively.

Conclusion: ¹³¹I and ¹²⁷I were used alone there was no penetration of the S. aureus biofilm and no damage. In contrast our results demonstrate that the radiolabeled Moxifloxacin (¹³¹I-MXF) have potent anti-biofilm activity against S. aureus compare to MXF, ¹²⁷I-MXF and media control. This is suggested that, ¹³¹I labeled antibiotic may have harmful effect on biofilm structure.

Key words: Biofilm, moxifloxacin, radioiodination, staphylococcus aureus ATCC 35556

Preferred Presentation Type: Poster Presentation

DOI: 10.4274/mirt.24.01.14