Helicobacter pylori as an Etiologic Factor in Primary Lung Carcinoma

Nur BÜYÜKPINARBAŞILI
Department of Pathology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey

ABSTRACT

Objective: Although the importance of environmental and occupational exposure to carcinogenic agents in pulmonary carcinoma is well known, some other factors, such as familial predisposition, genetic abnormalities, and recently, the presence of **Helicobacter pylori** infection, are being disputed. This study focused on the relationship between pulmonary carcinoma and **H. pylori** infection.

Methods: In total, 48 histologically verified and operated patients with pulmonary carcinoma, including 38 males and 10 females, were included; 22 of the cases were of squamous cell carcinomas and 26 were adenocarcinomas. The control group composed of 20 patients who underwent pulmonary operation for causes other than lung cancer. Adjacent non-neoplastic parenchymal and bronchial tissue examples were stained using the Giemsa stain in carcinoma cases. The pulmonary tissue-contained bronchial sections were stained in control cases. The bronchial epithelia and lumina in the Giemsa stained slides were examined for **H. pylori** bacilli.

Results: **H. pylori** was found in 2 of 48 carcinoma cases. The histopathological diagnosis of these 2 cases was squamous cell carcinoma. But there wasn’t any case stained for H.pylori in the control group.

Conclusion: The relationship between pulmonary carcinoma and **H. pylori** infection had been researched through serological studies; however, conflicting evidences have been obtained. The bacterium is transmitted to the lungs via seeding and inhalation was reported to be effective directly. Chronic **H. pylori** infection leads to bronchial epithelial proliferation via increased gastrin level and cyclo-oxygenase-2. Moreover, it contributes to pulmonary carcinogenesis. In conclusion, an association between **H. pylori** infection and pulmonary carcinoma may be revealed by variable studies, and the underlying mechanisms can be understood.

Keywords: Helicobacter pylori, etiology, lung carcinoma

Introduction

Primary carcinoma of the lung is the most common cause of cancer death for both men and women and accounts for 28% of the overall cancer deaths (1). It frequently occurs in association with occupational and environmental exposure to carcinogenic agents. There are some other factors related to the development of lung cancer, such as familial predisposition, genetic alteration, and more recently, **Helicobacter pylori** (HP) infection (2-4).

Helicobacter pylori infection of the gastric mucosa affects approximately 50% of the world’s population (5). A very high seroprevalence of HP has been reported worldwide, especially in developing countries (6). Overall, 70%-80% of the adults and 50%-60% of the children are seropositive for HP in Turkey (7, 8).

Helicobacter pylori is the main cause of chronic antral gastritis and is strongly associated with peptic ulcer disease, gastric cancer, and gastric MALT-lymphoma (9). Recently, some extradigestive disorders, including cardiovascular, skin, rheumatic, and liver diseases, have also been associated with HP infection (9). Furthermore, a number of studies have reported an association between HP infection and a variety of extradigestive disorders such as respiratory diseases. Moreover, lung cancer has been found to be 2–3 times more prevalent in peptic ulcer patients than in healthy subjects (10). These findings have suggested that HP plays a role in the pathogenesis of the lung cancer. We aimed to investigate the prevalence of HP in lung cancer cases.

Cite this article as: Büyükpinarbaşılı N. **Helicobacter pylori** as an Etiologic Factor in Primary Lung Carcinoma. Bezmialem Science 2018; 6: 134-7.

This study had been presented as a poster announcement at XXVth National Pathology Congress in Bursa.
Methods

In total, 48 histologically verified lung cancer cases operated in a thoracic surgery department in January 2013-June 2015 were included in this study. The characteristics of cases are shown in Table 1. The cases included 38 males and 10 females; 22 were squamous cell carcinoma cases and 26 were adenocarcinoma cases. The age of the patients ranged from 45 to 84 years and the median was 58. The exclusion criteria were (1) prior *Helicobacter* eradication therapy, (2) consumption of acid suppressive drugs or antibiotics in the preceding 6 months, and (3) a history of operation of the upper gastrointestinal tract.

Twenty cases underwent to thoracic surgery for reasons other than lung carcinomas constituted to control group (Table 1). The reasons for surgery in the control group were bullae in 10 cases, sequel lesions in 8 cases, and pulmonary hamartomas in 2 cases. The exclusion criteria for the control group were (1) a known history of lung cancer, (2) prior *Helicobacter* eradication therapy, (3) consumption of acid suppressive drugs or antibiotics in the preceding 6 months, and (4) a history of operation of the upper gastrointestinal tract.

In the pulmonary carcinoma cases, both adjacent non-neoplastic parenchymal and bronchial tissue examples were stained using the Giemsa stain. The same studies were also applied to the pulmonary tissue-contained bronchial sections in the control cases. HP bacilli were examined in the bronchial epithelia and lumina in the Giemsa stained slides. Histochernical studies were applied using the automatic Ventana-Benchmark Special Stain Device (Tuscon, Arizona, USA).

Results

Helicobacter pylori was found in 2 of 48 carcinoma cases (Figure 1). The ages of these cases were 52 and 54 years. Both of them were males and were smokers. These tumors were centrally localized. One tumor was 4.5 cm and the other was 6 cm in diameter. The histopathological diagnosis of these 2 cases was squamous cell carcinoma. Neither the control group nor the adenocarcinoma cases were stained for the bacillus. However, only 2 cases were positive for HP, which limits the statistical evaluation of this study.

Discussion

Helicobacter pylori is a spiral shaped gram negative bacterium. The phenotypical differences in isolated HP are either related or not to the production of vacuolated cytotoxin (VacA) and cytotoxin-related protein (CagA). Type I HP can produce these proteins. The others who are unable to produce these proteins are classified as Type II. Type I infections lead to a serious disorder (11). The International Agency for Research on Cancer classified HP as a group I carcinogenic agent (12). The upregulation of gastrin and cyclo-oxygenase-2 (COX-2), which may contribute in the angiogenesis and tumor development in HP infection, has been shown to lead to lung cancer development (4).

Urease, a surface enzyme of HP, is involved in HP infection. The urease mRNA was found to be highly expressed in gastric cancer tissues (13). Cell proliferation rate of gastric cancer cells was found higher after stimulation with HP exudate having strong urease activity than with low urease activity (13). These results suggest that urease has an important role in the development of gastric mucosal hyperproliferation. In recent years, HP urease enzyme was found to access the lung in the gastroesophageal reflux disease; thus, HP-associated urease may also have an important role in the proliferation and carcinogenesis of pulmonary mucosa (13).

Plasma gastrin level is high in HP infection, suggesting that this hormone contributes to the lung carcinogenesis by inducing higher proliferation of bronchial epithelium leading to the induction of COX-2 (1).

Lung cancers exhibit higher expression and content of gastrin and its receptors are akin to the upregulation of gastrin bio-

Table 1. Distribution of age, gender, and pathological features of cases in patient and control groups

<table>
<thead>
<tr>
<th>Patient group (n=48)</th>
<th>Control group (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range (years)</td>
<td>45–84</td>
</tr>
<tr>
<td>Median age (years)</td>
<td>58</td>
</tr>
<tr>
<td>Gender (F/M)</td>
<td>10/38</td>
</tr>
<tr>
<td>Smoker (+/−)</td>
<td>46/2</td>
</tr>
<tr>
<td>Localization of tumor (Central/Peripheral)</td>
<td>23/25</td>
</tr>
<tr>
<td>Range of tumor size (cm)</td>
<td>1.5–9</td>
</tr>
<tr>
<td>Tumor type (SCC/AC)</td>
<td>22/26</td>
</tr>
</tbody>
</table>

F: female; M: male; SCC: squamous cell carcinoma; AC: adenocarcinoma
The author has no conflict of interest to declare.

Ethics committee approval was received for this study from the ethics committee of Bezmialem Vakif University.

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Conflict of Interest: The author has no conflict of interest to declare.

Financial Disclosure: The author declared that this study has received no financial support.

References