Aromatase Deficiency in Two Siblings with 46, XX Karyotype Raised as Different Genders: A Novel Mutation (p.R115X) in CYP19A1 Gene

Case Report

Abstract

Aromatase deficiency rarely causes a 46, XX sexual differentiation disorder. The CYP19A1 gene encodes the aromatase enzyme which catalyses the conversion of androgens to oestrogens. In cases with 46, XX karyotype, mutations in the CYP19A1 gene can lead to disorders of sex development. Clinical findings in aromatase deficiency vary depending on the degree of deficiency. Due to the effect of increased androgens; acne, cliteromegaly and hirsutism can be observed in mothers with placental aromatase deficiency. A decrease in the maternal virilisation symptoms is observable in the postpartum period. It is rarely reported that there is no virilization in pregnancy. In this study, two 46, XX sibling having the p.R115X (c.343 C>T) novel pathogenic variant in the CYP19A1 gene and raised as different genders are presented. In conclusion, 46, XX virilised females should be examined in terms of aromatase deficiency once congenital adrenal hyperplasia has been excluded, even if no history of maternal virilisation during pregnancy is present.

Keywords: 46, XX disorder of sex development, aromatase deficiency, CYP19A1 gene

Conflict of interest: None declared

Introduction

Aromatase deficiency is a rare autosomal recessive disorder caused by mutations in the CYP19A1 gene (1). The CYP19A1 gene encodes the aromatase enzyme which catalyses the conversion of androgens to oestrogens. In the affected 46, XX cases, clinical findings in the neonatal period are between mild cliteromegaly to complete labioscrotal fusion due to difference from exposure due to increased androgen exposure in the intrauterine phase. An increase in virilisation at puberty or the non-appearance of secondary sex characteristics, are the main clinical features in the late period. Affected 46, XY cases have normal prepuberal growth. Delayed epiphysial closure, onychoid body structure, and a decrease in bone mineral density can be observed in both sexes (2). This study presents a novel pathogenic variant in the CYP19A1 gene in two siblings raised as different genders.

Case 1: A 14-year-old patient who had been raised as a male was brought to the pediatric endocrinology clinic for undescended testis and hypospadias. Although parental consanguinity was not reported to be present in the family, the family history revealed that they were living in a village of 500 inhabitants. Patient’s mother who has 1 gravity and 1 parity had no symptoms of excessive androgen production such as hair loss, virilisation, or acne during pregnancy. On physical examination, height, weight, and phallus were measured to be 154.9 cm (SDS: - 2.5), 57 kg (SDS: -0,6), and 2 cm respectively. Breast tissue and palpable gonads were not detected. Prader stage 3, two urogenital openings and stage 2 pubic pilosity were also noted. On laboratory examination, bone age was 11 years. Follicle stimulating hormone (FSH) level was 70 mIU/l (1.5-12.8 mIU/l), Luteinizing hormone (LH) 30 mIU/l (0.1-12 mIU/l), free testosterone 0.9 pg/ml (0.8-1.4 pg/ml), Estradiol 22.9 pg/ml (7-60 ng/ml). Adrenocorticotropic hormone (ACTH), cortisol and 17-hydroxyprogesterone (17-OHP) were both found to be normal. Pelvic ultrasonography revealed 19 x 14 mm right ovary and 15 x 12 mm left ovary and an absence of uterus. Karyotype was 46, XX and SRY was negative following FISH analysis. On laparoscopic examination, normal-looking bilateral ovaries and a small uterus were observed. The biopsy findings of the right gonad were consistent with ovarian tissue and ovarian follicle cysts were observed. Sequence analysis of SOX9 gene revealed no mutation. Clinical and laboratory findings of the patient aromatase deficiency was considered and a novel homozygotes nonsense p.R115X mutation in CYP19A1 gene was detected.
The case was predicted to be pathogenic by in silico analysis. The Council of Disorders of Sex Development decided that the case should be raised male on the ground of more distincted secondary sex characteristics in the adolescence period (11). In the study of Li et al., (13) aromatase mutations have shown that in humans, they can produce variable or “non-classic” phenotype of enzyme function and decrease in oestrogen synthesis. Most of the reported mutations contain single base changes in exons (6, 7). In the study, the CYP19A1 gene sequence analysis detected heterozygous novel nonsense p.R115X pathogenic variant in both siblings (figure 1a and 1b). This nonsense mutation is predicted to be pathogenic using in silico analysis (MutationTaster) (8) and minor allele frequency data in several public databases (NCBI dbSNPbuild141 (http://www.ncbi.nlm.nih.gov/SNP/), 1000 Genomes Project (http://www.1000genomes.org/), Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/)).

Clinical findings in aromatase deficiency vary depending on the enzyme levels. Due to the effect of increased androgens caused by placental aromatase deficiency, acne, cliteromegaly and hirsutism can be observed in mothers carrying affected fetus. A decrease in the maternal virilisation symptoms is observed in the postpartum period (9). The placental aromatase activity of 1-2% is reported to be protective against maternal virilisation during pregnancy (10). In the family presented here, the mother had no symptoms of excessive androgen production such as hair loss, virilisation, or acne during pregnancy. Enzyme activities could not be studied in the patients and their mother. Marino et al reported that maternal virilisation was also not observed in their three cases with CYP19A1 mutations. During the follow-up period, phenotypic variability was determined among the affected patients. Two patients had a new mutation (c.574C>T). They found c.628G>A mutation in four of the six unrelated patients (11).

It has been reported that of 24 (12 males, 12 females) patients with proven CYP19A1 deficiency, 70% of the females having CYP19A1 mutation show virilisation compatible with Prader stage 4−5, while males are usually presented with metabolic problems and short stature (7, 12). For affected female cases, variable phenotype, such as cliteromegaly due to increased androgen levels in the intrauterine phase or complete labioscrotal fusion can be observed. Aromatase deficiency has been speculated in aromatase-deficient prepubertal girls, an amplification of follicle-stimulating hormone (FSH) signaling might occur in the presence of high intraovarian androgen production and be responsible for the development of ovarian follicular cysts (5). On the other hand, hypoplastic ovaries rather than enlarged ovaries in aromatase-deficient females have rarely been reported. Lin et al (13) and Akcurin et al (14) reported a few cases of aromatase deficiency with hypoplastic ovaries and uterine. Lin et al (13) suggested that the streak ovaries may be an inherent manifestation of CYP19A1 deficiency. Also, polycystic ovaries may appear in later periods depending on human chorionic gonadotropin (HCG) stimulation. Cliteromegaly, hirsutism and acne can be seen in affected individuals with the non-appearance of secondary sex characteristics in the adolescence period (3). The studies have showed that loss of function mutations in the gene may result in various phenotypic changes, especially appearing in the pre-pubertal and pubertal period (11). In the study of Li et al., (13) aromatase mutations have shown that in humans, they can produce variable or "non-classic" phenotypes. They reported that low residual aromatase activity may be sufficient for the development of breast and uterus in adolescence despite significant androgenization in the uterus. Such phenotypic variability can be further influenced by modifying factors such as non-classical pathways of estrogen synthesis, variability in the core modifiers, or differences in androgen responses.
Siblings presented in this study had been raised as different genders due to the appearance of their external genitalia and virilisation levels. In aromatase deficiency, oestrogen replacement treatment regulates gonadotropin secretion, glucose metabolism and liver functions while reducing lipid and insulin levels (14, 15). In our cases, lipid levels and glucose metabolism were found to be normal. However, decreased FSH and LH levels were observed with the oestrogen replacement treatment. Bone mineralisation and maturation are adversely affected in patients with aromatase deficiency. Oestrogen has positive effects on bone density by prolonging the life cycles of osteoblasts and osteocytes while reducing bone resorption (4). Osteoporosis was detected in both of our patients. Hormone replacement therapy was initiated and oral intake of calcium was increased as they are followed up.

Conculsion

In conclusion; 46, XX virilised cases should be examined in terms of aromatase deficiency after congenital adrenal hyperplasia was excluded even if there was no maternal history of virilisation during pregnancy and the CYP19A1 mutation analysis should be performed. Early diagnosis of this disorder is of vital importance for gender selection and hormone replacement therapy.

References

Figure 1. Figure 1a (Case 1) and 1b (Case 2): a novel homozygous nonsense pathogenic variant p.R115X (c.343 C>T) was detected in the CYP19A1 gene sequence analysis. Figure 1c (Mother) and 1d (Father): The parents were heterozygous for the same mutation.