Ön Kamara Derinliği Ölçümlerinin Ultrasonik Biometri ve Orbscan II Topografi Teknikleri ile Karşılaştırılması

Özgür Zengin (*), Özlem Barut Selver (*), Zeynep Özbe (*), Aygün Yaman (*), İsmet Darak (*)

ÖZET

Amaç: Ultrasonik biometri ve Orbscan II toplografisi cihazı ile ön kamara derinlik (ÖKD) ölçümünün karşılaştırılması.

Bulgular: ÖKD ortalaması, ultrasonik biometri ile 3,05 mm ± 0,40 (2,00-3,91) ölçülürken, Orbscan II ile 3,33 mm ± 0,41 (2,66-4,33) olarak şekilde ölçülmüştür. Bu iki yöntem arasındaki fark istatistiksel olarak anlamlı bulunmuştur. İki farklı yönteme ait korelasyon ise orta derecede olarak saptanmıştır.

Tartışma: Katılımcı cerrahi ve fakik GIL implantasyonlarında, ön kamara derinliğinin kesişen olarak teşhis edilmesi, GIL gücü ve konunun değerlendirilme ve endotel hücre hasanının azaltılmasında oldukça önemlidir. Bu iki ölçüm yöntemi arasındaki istatistiksel anlamlı fark klinikte olduğu önemli taşıyabilmektedir.

Anahtar Kelimeler: Orbscan II toplografisi, ön kamara derinliği, ultrasonik biometri.

SUMMARY

Comparasion of Orbscan II Topography and Ultrasound Biometry in the Measurement of Anterior Chamber Depth

Purpose: To compare the Orbscan II topography and ultrasound biometry for the measurement of anterior chamber depth (ACD).

Material-Methods: Seventy-four eyes of forty patients who were evaluated for routine cataract surgery at the Department of Ophthalmology Dokuz Eylül University School Of Medicine were included in the study. ACD and AL values were measured with Orbscan II topography and ultrasound biometry. The paired t-test and Pearson correlation analysis were used in the statistical analysis.

Results: Average ACD value was 3,33 mm ± 0,41 (2,66-4,33) with the Orbscan II and 3,05 ± 0,40 mm (2,00-3,91) with the ultrasound biometry. The difference between two methods was statistically significant. The correlation between two methods was intermediate.
Giriş

Katarakt ve refraktif cerrahi tekniklerinin gelişme-paralel olarak, keratometrik değerler, ön kamara derinliği (ÖKD), göz merkezi veya yaymış lens kalınılığı ve aksiyel uzunluğun (AU) doğru olarak ölçümü büyük önem kazanmıştır.

ÖKD, pupil açıklığında optik aks boyunca korneanın posterior verteksi ile göz merkezinin (kristalin lens) ön yüzeyi arasındaki mesafeyi içermektedir (1,2). ÖKD ölçümlü oızilmolojinin farklı alanlarında kullanılmaktadır, özellikle de katarakt cerrahisi ve refraktif cerrahide uygun hatta ve göz içi lensi (GIL) şekilde önem taşımaktadır (1–8).

ÖKD ölçümlüde farklı cihazlar kullanılabilir. En yaygın olarak kullanılan yöntem olan ultrasonik yöntem, biometrik ölçümlerde ileri standart olarak kabul edilmektedir (1,2,9–13).

Temesli (kontakt) ultrasonik biometri, ÖKD ölçümlüde en yaygın kullanılan yöntem olmakla beraber yapılan ölçümler birçok faktörden etkilenmektedir, özellikle sonuçların ölçüm yapan kişinin sağlığına bağlı olduğu, korneya temas gerektirmesi ve aynı düzleştirme sonucu hatalı ölçümlere sebep olabildiği, güvenilirliğini azaltan faktörlerin başında gelmektedir (14–16). Ayrıca ölçüm sonuçları, probun doğru aksiyel düzlemi yereleştirilmisinden de etkilenmektedir. Korneal abrazyon, infeksiyon riski ve probun çabuk sterilizasyonunun sağlanaması, yöntem sonuçlarını olur ortaya çıkarmaktadır (17). Bu nedenle, ölçüm üzerine temassız (-non-kontakt) yöntemler de hizmet gösterebilir ve kullanımları da yaygınlaşmıştır (18–19).

Son dönemde ÖKD ölçümler için topografik cihazların kullanım yaygınlaşmaktadır. ÖKD ölçümlü için kullanılan topografik cihazlardan biri de Orbscan II (topograf sistemidir. Bu sistem, "scanning slit" (silt tarama) metodu ile çalışır ve ÖKD ölçümleri için doğru ölçüm yapan ve kullanılabilecek bir alet olduğu bildirilmektedir (9,14,19).

Bu çalışmada ise ultrasonik biometri ve Orbscan II cihazı ile ölçülen ÖKD değerlerinin karşılaştırılması olarak incelenmiştir.

GEREÇ VE YÖNTEM

Çalışmaya, Dokuz Eylül Üniversitesi Tıp Fakültesi Göz Hastalıkları Anabilim Dalına başvurulan, katarakt tansısı alarak cerrahide hazırlanan, herhangi bir korneal patolojisi bulunmayan, daha önce oıziler cerrahi geçirmiş ve 40 hastanın 73 gözü dahil edilmiştir. Bu hastalara rutin katarakt cerrahisi öncesi, Orbscan II (Orbscan Inc., Salt Lake City, UT) ve ardından ultrasonik biometri cihazı EchoScan U 3300 (Nidek Co.,Tokyo, Japon) ile ÖKD ölçümleri yapılmıştır.

Ultrasonik biometri ile yapılan ölçümde, kornea düzleştirilmiş için ortaya çıkabilecek korneal düzensizliğinin topografik ölçümlü ektiklememesi açısından önceden Orbscan II topografı cihazı ile ölçümler yapılmıştır. Ölçüm öncesi herhangi bir topikal anestezik damla alınmış ve göz içi basınç ölçümleri alınmış olmasa dikkat edilmistir. Orbscan II topografı ölçümlerini aynı kişi tarafindan, hastanın oturma konumunda, baş simeti olarak ve halkalar içindeki hedef üzerinde fiksayon yaparak yapılanın ortalama görünüş vermiştir. Orbscan II yönteminde ÖKD, kornea epitelini ile göz merceğini (kristalin lens) ön yüzeyi arasındaki uzaklık olarak tanımlanmış olup cpi modu kullanılmıştır.

Ultrasonik biometri ölçümleri de aynı kişi tarafından yapılanmıştır. Ölçümler hasta yatak konumunda, %0,5% proparakan hidroksilet (Alcaine®, Alcon, Fort Worth, Texas ABD) ile topikal anestezik uygulandıktan sonra, belirleri bir noktadaki fiksayon yaparak, prob sankal korneya dökulerek şekilde yapılmıştır. Her iki teknik ile ölçüm yapılarak, ortalama istatistiksel analizde kullanılmıştır.

İki yöntemde ölçümlerın karşılaştırılması farkedik önem, ölçümü bir grupta testi ile, yöntemler arası korelasyon ile Pearson korelasyon analizi ile incelenmiştir. İstatistiksel önemli bir p<0,05 kabul edilmistir. İstatistiksel analiz için SPSS for Windows 11,0 paket programı kullanılmıştır.

BULGULAR

Çalışma katkıları 40 hastanın 73 göz ortalaması 62,5 ±4,94 (41-80) olup, 27 hasta kadın (%67,5) ve 13 hasta erkek (%32,5). Hastaların 33 tanesi her iki gözü 7 tanesinin birer gözü çalışıaya dahil edilmişdir. Ölçümlerin 73 gözün 39’su sağ göz (%53), 34’ü sol gözdür (%47).

ÖKD ortalama değer, ultrasonik biometri ile 3,05 mm ± 0,40 (2,00-3,91) ölçülürken, Orbscan II ile 3,33

mm ± 0,41 (2,66-4,33) olacak şekilde ölçümüştür. Bu iki yöntemin arasındaki fark istatistiksel olarak anlamlı bulunmuştur.(p=0,000) (Tablo 1) İki farklı yönteme ait korelasyon ise orta derecede olarak saptanmıştır. (t=0,638, p=0,000) (Şekil 1)

<table>
<thead>
<tr>
<th>Ortalama</th>
<th>Standart sapma</th>
<th>Araçlık</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbscan II</td>
<td>3,33</td>
<td>6,41</td>
</tr>
<tr>
<td>Ultrasonik biometri</td>
<td>3,05</td>
<td>6,40</td>
</tr>
</tbody>
</table>

* Bağımlı gruplarda t-test.*

Şekil 1. Ultrasonik biometri ve Orbscan II ile ÖKD ölçümündeki ikiği

TARTIŞMA

ÖKD'yi değiştik tekniklerle ölçen çeşitli cihazlar mevcuttur ve her birinin avantaj ve sorunları bulunmaktadır.

Klinik anıtlar için cihaz seçeken doğru ölçüm yapması en önemli faktörlerden bir tanesidir. Cihazın doğru ölçüm yapmasını etkileyen faktörlerin başında tekrarlanabilir olması gelir. Orbscan II ve IQE, Master ile diğer cihazları karşılaştırılan çalışmalarda, ultrasonik ÖKD ölçümlerinin ölçüm yapan kişinin deneyimi ve kullanıcının teknik genellikle fakir olduğu farka az tekrarlanabilir ve daha değişken olduğu saptanmıştır (2,9-20,22).

Ölcümler arası ortaya çıkan farklı nedeniyle ÖKD'yi belirli bir amaciyla ultrasonik biometri bir çok farklı cihazda karşılaştırılabilecek de öne çıkıyor (18).

Aufrith (23) ve arkadaşları ÖKD ölçümünde Orbscan ve immersiyon ultrasonik yöntemi karşılaştırıldıkları çalışmalarda, ölçümler arasında yüksek korelasyon saptanmıştır. Katarakt hastalarında yapılan ölçümlerde ortalama ÖKD Orbscan ile 3,23 (+0,55) mm; ultrasonik biometri ile 3,27 (+0,54) mm olarak saptanı, iki ölçüm arasındaki farklı oranda -0,04 ± 0,15 mm olarak bulunmaktadır.

Vetizugo (9) ve arkadaşları Orbscan ve ultrasonik biometriyi farklı refraktif durumlarda karşılaştırılarak ve iki ölçüm yöntemi arasındaki ortalamalar farklı 0,17 mm olarak bulunmuştur. Orbscan ile ÖKD ölçümü ayrıca hiporefraksonik gözlerde hipermetropik gözlerde oranda daha belirgin olmakla beraber ultrasonik biometriye göre daha düşük bulunmuştur. Orbscan ile yapılan ölçümlerin güvenilirliği, ultrasonik biometriye göre istatistiksel olarak.decorators olarak yüksek saptanmıştır.

Reddy (24) ve arkadaşlarının yaptığı bir başka çalışmada ise yaşa bağlı katarakt gelişen olgularında Orbscan II ile ÖKD ölçümlerini ultrasonik biometriye göre anlamlı derecede yüksek bulunmuştur (Ortalama +0,40 mm).

Hashemi (25) ve arkadaşları ise ÖKD ölçümlerinde Orbscanın daha düşük sonuç aldığını saptaramışlardır (-0,03 mm). Fakat çalışmalarda ölçüm sırasında sıklıkla aya kulanılanlar için sıklıkla bulunan 0,08-0,12 mm ÖKD artışı etkisinden yola çıkarak Orbscan II'nin ÖKD ölçümünde ultrasonik yöntemiyle daha yüksek değerler verdiği söylenebilirlerini belirtmişlerdir. Lam(26) ve Sheng(20) sıklıkla iki ile yapılan ölçümlerin aksıdadokedex olmakta etkili olduğunu söylerlerler.

Bazı araştırmacalar ultrasonik probus ile kornea kaç tanıt ederek yapılan ölçümlerde daha düşük ÖKD değerleri elde edilceğini bu nedenle immersyon ultrasonik yöntemi ile yapılacak ölçümün daha üstün olacaktırı savunmaktadır (10,12,20,22,24,26-28).

Bizim çalışmamızda 40 hastanın 73 gözünde ÖKD iki farklı cihazla ölçülmüş ve sıklıkla kullanılmıştır. Orbscan II ile yapılan ÖKD ölçümleri ultrasonik yöntemiyle daha yüksek bulunmuştur (Ortalama +0,28 mm).
25. Hashemi H, Yazdani K, Moravaran S, Fotouhi A. Ante-
rior chamber depth measurement with A-scan ultrasonog-

26. Lam AK, Chan R, Pang PC. The repeatability and accu-
racy of axial length and anterior chamber depth measure-

27. Carkeet A, Saw SM, Gazzard G, Tang W, Tan DT. Repe-

28. Packer M, Fine IH, Hefisman RS, Coffman PG, Brown-
uker H. Immersion A-scan compared with partial coherence