Optik Sinir Başlı Druseninde Optik Diskin ve Sinir Lifinin Tabakası Kalınlığının Tarayıcı Laser Oftalmoskopisi ve Optik Koherens Tomografi Yöntemleri ile İncelenmesi

Özcan Ocakoğlu (*), Can Üstündağ (*), Kazım Devranoğlu (*),Nilüfer Köylüoğlu (**), Velittin Oğuz (***)
Gürhan Kendiroğlu (**), Şehirbay Özkan (***)

ÖZET
Amaç: Optik sinir başlı drusen (OSBD) olan gözlerin görme alanlarında görülen kayıpların optik disk ve sinir lifi tabakası kalınlığındaki değişiklikleri ile ilişkisinin araştırılması

Sonuçlar: Yaş ortalaması 44.34 ± 7.8 olan 4'ü kadın, 3'ü erkek 7 hastanın drusen tespit edilen 12 gözü çalışmaya almındı. 5 hastada iki taraflı, 2 hastada tek taraflı drusen vardı. Daha önceki çalışmalara uygun olarak yapılan drusen yoğunluğu 5 %da 6 %'tan daha, grade 2 ile grade III idi. Grade I drusenli gözlerin görme alanlarında genel hassasiyet azalmış, grade II ve III drusenli gözlerde ise lokalize absolü skotomlar ve periferik daralmalar tespit edildi. HRT ile elde edilen görüntülenin incelenmesinde optik disk alanı olguların 9'unda 2.5 mm²'nin üstünde idi, çukurluk/disk alanı oranının düştüğü, çukurluk hacminin ise neredeyse kaybolduğu görüldü (full disk görünümü). Ort.çukurun derininin ve ortala retinadır sinir lif tabakası kalınığın değerleri ise azalmıştı. Sinir lifi tabakası kalınığın artış grafi-ginde sinir lif tabakasının inceldiği bölgelerde görme alanlarında da kayıp olduğu görüldü. Göreme alanlardaki kayıp olduğu bölgelerin sinir lif tabakası kalınığı 3.38 mm² lik dairesel taramalı OCT ile daha belirgin olarak azalmış bulundu. Değişik ölçü çizgisel taramalarda (radyal tarama) drusen ait yüksek reflektiviteli dikeni andırmak görüntülenere karşılıştı.

Yorum: Drusenli gözlerde glokomatöz değişiklikler olmasına dahi görme alanlarında glokom benzeri kayıplar olabilmektedir. Sinir lif tabakası kalınlığında lokalize incelmelere uyuşmu olan bu kayıplar hem HRT ve hem de OCT yöntemleri ile ortaya konabilmektedir. Özellikle güçlü olanların belirgin kayıbı olmayan gözlerde (örn. grade I drusen) sinir lifi tabakası kalınlığındaki incelmelere erken teşbitini sağlayarak iki yöntemin OSBD'li hastaların tani ve takibinde faydali olduğu kanununa varılmıştır.

Anahtar Kelimeler: optik sinir başlı drusen (OSBD), görme alanı, tarayıcı laser oftalmoskopii (SLO), optik koherens tomografi (OCT)

(*) I.Ü. Cerrahpaşa Tıp Fakültesi Göz Hastalıkları AD., Doç. Dr.
(**) I.Ü. Cerrahpaşa Tıp Fakültesi Göz Hastalıkları AD., Asis. Dr.
(***) I.Ü. Cerrahpaşa Tıp Fakültesi Göz Hastalıkları AD., Prof. Dr.

Mecmuaya Geliş Tarihi: 28.10.1999
Düzeltmeden Geliş Tarihi: 02.08.2000
Kabul Tarihi: 04.07.2000
GİRİŞ

Optik sinir başı druseni (OSBD), optik sinirin lami-na ön bölgelerinde yerleşmiş, diske one doğru kabank-ık yapan ve disk kenarının belirsizleşen hıyalın kay-naklı cismiciklerdir. Sküli klinik olarak %0.3-0.4 iken histopatolojik çalışmalarda bu oran %1-2 ye kadar çıka-bilir (1,2). Küçük ve sinir içine gümüllü olanları gözden kaçabilmir, büyük olanları ise optik diske psödopapillödem görünümü verebilir (3). Drusenin oluşumunda retina si-nir liflerinde aksoplazmik akım düzensizlikleri rol oyn-ar. Drusenin sinir lifi tabakası üzerinde direkt basısı ve damarsal faktörleri olumsuz etkilemesine bağlı olarak vasküler yetmezlik ve bunun sonucu sinir lifi katında in-celme ve atrofi oluşabileceği ileri sürülmektedir (4,5).

OSBD’nin tanınamasında kullanılan yöntemler arasında otoforesans ve geç devre boyanmayı gösteren flö-resein anjiografisi, yüzeyel kalsifikasyonu ortaya koyan kranyal tomograf tarayıcı, manyetik rezonans ve ultra-sonografi sayılabilir (6,7). Son zamanlarda yüzeyel dru-seni 540 nm dalga boylu yeşil ışın; derin ve gümüllü dru-seni ise 780 nm dalga boylu infradır ışın derin ve gümülli druseni ise 780 nm dalga boylu infradır ışın ile göster-rebilen tarayıcı laser oftalmoskop (SLO) yöntemi de kullanılmaya başlanmıştır. SLO yöntemi ile optik disk-ten çıkan damarlardaki anormal dallanmalar, optik çu-kurluğun kaybı, disk kenar düzensizlikleri ve kanamalar- da ortaya konabilmektedir (8).

OSBD’i glokomda ve diğer optik nöropatili hastal-iarda görülebilen görme alanı defektlerine benzetmen bul-gular verebilir (3,9). Drusen olan gözlerde glokom meydana gelirse görme alanındaki değişikliklerin ne ka-daranın glokom ne kadarın drusene ait olduğunu bi-linmesi önemlidir. Optik çukurluğun kapatma drusen çu-kurluk/disk oranının değerlendirmesinde güçlük yaratır (3). Bu nedenle oftalmoskopik muayene sırasında daha objektif değerlendirmeye yöntemlerine ihtiyaç vardır.

Çalışmamızda OSBD tespit edilen 7 hastanın 12 gözü görme alanı, optik disk ve sinir lifi kalinlık değiş-şiklikleri açısından incelenmiştir. Armacıımız optik sinirin oftalmoskopik değerlendirmesinin zor olduğu bu olgularda visionelenilen görme alanı defektlerinin optik sinir başı ve sinir lif tabakasındaki değişiklikler ile izah
edilip edilemeyeceğini ortaya koymaktur. Bu amaçla glokomu olan ve olmayan drusenli gözlerin optik siniri SLO prensibi ile çalışan Heidelberg retina tomografisi (HRT) kullanarak analiz edilmiştir. Sinir lifi tabakasını incelemek ve görme alanı defektleri ile uyumlu sinir lif tabakası kaybı olup olmadığını gösterebilmek için yeni bir teknoloji olan optik koherens tomografi (OCT) yöntemi kullanılmıştır.

HASTALAR ve YÖNTEMLER

Cerrahpaşa Tip Fakültesi Göz Hastalıkları Anabilim Dalına çeşitli sebeplerle mürecaat etmiş 7 hastanın OSBD tespit edilen 12 gözü çalışmaya alınmıştır. Tüm gözlerde görme keskinliğini ölçtik, ön segmentin ayrıntı bıyonikroskopik muayenesi, göz içi basınç ölçümü, %10 siklopotolate, %1 tropicamide ve %10 fenilefrin kullanılarak pupilla dilatasyonu sonrası dijital optik disk ve +90 D lens yardımı ile indirekt olarak optik disk ve fundus muayeneleri yapıldı. Topcon fundus kamera kullanılarak dilate pupillalli gözlerin optik disk fotoğrafları alınmıştı. Tüm hastalara Humphrey Bilgisayarlı Otomatik Perimetrenin Santral 30-2 eşik test programı kullanılarak görme alanı muayenesi yapıldı. Optik sinir başı analizinde konfokal laser oftalmoskopi prensibi ile çalışan Heidelberg Retina Tomografı (Software version 2.01) kullanıldı. Sinir lifi kalmıklarının tayininde Optik koherens tomografi yöntemi (Version 1.01) uygulandı.

Heidelberg Retina Tomografisi (HRT) : (10,11)

HRT, optik diskin ve peripapiller retina bölgesinin üç boyutlu görünümünü elde edebilen ve yüksek teklandırabilen analizini yapabilen bir konfokal tarayıcı diod laser oftalmoskoptür. 670 nm dalga boylu bir diod laser işlem retina yüzeyini taramak için kullanılır. Dijital konfokal bir görüntü elde edebilmek için bir laser demet retinaya odaklanır. Ossilatuvar ayna laser de-

Şekil 1. Değişik Grade’li OSBD görünümüleri 1a (Üst sol): Grade I OSBD 1b (Üst sağ): Grade II OSB 1c (Alt sol): Grade III OSBD 1d (Alt sağ): Grade III OSBD + optik disk üzerinde kıymik kanama
metinin periyodik defleksiyonunu sağlar ve retinanın 2 boyutlu görüntüsünü arıksız seriler halinde oluşturur. İşnin yansişığı her bir noktadan refleksiyon oluşumunu yapar.

Konfokal optik düzenlemede sadece arzu edilen fokal planlanan yansıyanışın ölümlümesi amaçlanır, böylece fokus dişi ışın suprese edilmiş olur. Elde edilen 2 boyutlu görüntülerin arıksız seriler olarak üst üstü bindirilmesi ile her biri 256x256 pikselden oluşan birbirine eşit mesafeli 32 arıksız optik kesit görüntüüsünden 3 boyutlu görüntü elde edilir. Her bir pikselden retina yüzeyinde yansıyanışın yönlüğünü bilgisayar tarafından kaydedilir ve bu noktaya ait yerleşimdeki retina yüksekliğinhesaplamasında kullanılır. Görülen alan boyutu 10, 15, ve 20 derece olarak ayarlanabilir. Pupilla genişletilmesi gerekmez. Büyütme hata-

OCT teknikinde dairesel ve radyal taramalar kullanılabılır. Dairesel taramalar her bir gözün optik sini- niri çevresinden elde edilmiştir. Taramalarda 1.73 OD ları hastaların kornea kurvature değerleri kullanılacak düzeydilir.

Optik koherens tomografi (OCT):

OCT teknikinde dairesel ve radyal taramalar kullanılabılır. Dairesel taramalar her bir gözün optik siniri çevresinden elde edilmiştir. Taramalarda 1.73 OD
ve 2.0 OD, yarıkaplı dairesel kullanabilir. 1.73 OD’lik dairenin çapı yaklaşık olarak 3.38 mm olup disk çevresindeki 750 mikronluk bir alanı tara. Ayrıca istenilen tarama pozisyonlarında radyal taramalar kullanılabilir.

SONUÇLAR
Çalışmamıza 4’ü kadın 3’ü erkek toplam 7 hastanın disk drusen tespit edilmiş 12 gözü alınmıştır. Hastalardan 2 tanesi primer asırt alınmış gibi dolmakta terk edilmiş idi. 2 hasta psöodopapillodem nedeniyile nörooftalmoloji birimine müracaat etmiştir. 1 hasta tiroid oфтalmopati tanısı ile izlenenken, 2 hasta ise rütin göz muayenesi esnasında tespit edilmiştir. Hastaların yaş ortalamaları 44,34 ± 7,8 yıl, görmeleri tashihli olarak 0,7-1,0 arasında, gözçü basınıçları 21 mmHg’nin altında bulundu. Glukom tanısı ile takip edilen iki hastanın bilgisayarlı görme alanı tektiklerinde üst ve alt nazal bölgeler glukom düştürünü kayıplar mevcuttu. Optik disklerin oфтalmoskopik muayenelerinde 5 hasta iki tarafı, 2 hastada tek taraflı drusen tespit edildi. Bu tür gözlerde hiper infiltrasyon (grade 0) ve 2 hastada iki göz arasında drusen yoğunluğu farklı bulunurken (bir gözde Gr.I, diğerinde Gr.II) 3 hastada her iki gözlerinde aynı grade (1 hasta her iki gözde 2, 1 hasta Gr.II) drusen tespit edildi, 2 hastanın bir gözünde Gr.I drusen varken diğer gözde drusen tespit edilemedi. 2 gözde optik disk üzerindeki kıymak kanama tespit edildi (Şekil la, 1b, 1c, 1d).

Çalışmaya alınan tüm gözlerle Humphrey bilgisayarlı otomatik perimetrenin saniyelik 30-2 eşik test programı kullanılarak görme alan muayenesi uygulandı. Elde edilen tüm görme alanları drusenin daha önceden tespit edilen yoğunluk derecesine göre değerlendirildi. Grade I drusenli gözlerde görme alanında genel hassasiyet azalmış ve alt kadrana lokalize absolü skotomlar ve periferik daralma gözlemdi (Şekil 3a, 3b, 4a, 4b).

Heidelberg retina tomografisi kullanarak yapılan optik disk analizinde rütin olarak 10 derecelik büyüme ile çalışıldı. Elde edilen görüntülerin stereoatomik analizinde en büyük güçlük optik disk dış sınırlarının işaretlenmesi sırasında yaşandı. Drusen varlığı disk kenarını belirlemede önemli için kenar çizgisinin işaretlenmesini büyük güçlüğe yarar, ayrıca bazı gözlerde disk sınırlarının 10 derecelik saha dışına taşığı görüldü. Bu gözlerde 15 derecelik büyüme sahası kullanılarak ölçümler tekrarlandı. Optik disk kenarında disk sınırlarını belirleme sürecinde drusenle ait görüntüler tespit edildi. Elde edilen görüntülerin stereoatomik analizinde ölçümün gerçeklenmesi (9/12) disk alan 2,5 mm² nin altında idi, çekirdek alan ve çekirdek hacmi belirgin bir şekilde azalmış,
hatta kaybolmuştu (full disk görünümü (Şekil 2c, 3c, 4c)). Ortalama çukurluk derinliği ortalaması 0.040 mm bulundu. Ortalama sinir lifi kalınlığı değerleri ise 62 ile 182 mikron arasında idi. Drusen yoğunluğunu artırıca sinir lifi tabakası kalınlığındaki azalma belirginleşmekte idi. Sıralı segment dağılımı eğrilerinde sinir lifi kalınlığı grade I drușenli gözlerde normal sınırlarda icken, grade II ve III disklerde azalmiş bulundu (Şekil 2d, 3d, 4d).

Sinir lifi kalınlığının direkt olarak tespitinde yeni bir yöntem olan optik koherens tomografi kullanıldı. OCT yapılıken dairesel 1.73 disk çaplı ve 2.0 disk çaplı taramalar ve radial taramalar kullanıldı. Dairesel taramalardan özellikle 1.73 OD çaplı dairede drusenin yoğun olaraak görüldüğü bölgelerde sinir lifleri tabakası kalınlığında lokal incelmeler olduğu ve bu bölgederdeki incelme-}

лерin görme alanlarında tespit edilen kayıplar ile uygunluk gösterdiği görüldü. Lokalize sahalar dışında drusenin yoğunluğu ile ilişkili olarak tüm kadranslarda sinir liferinin kalınlığında normal kabul edilen değerlerle göre belirgin bir azalma olduğu gözlemdi. Radyal taramalarda özellikle Grade III drusenli gözlerde drusenin yoğun bölgesinde yüksek reflektiviteli gaga veya boynuzu andıran görünümler elde edildi (Şekil 2e, 3e, 4e).

TARTIŞMA

Özellikle OSBD glikom ile birlikte bulduğumuz zaman görme alanındaki defektlere artırmış durumda mi yoksa glikozomun ilerleyişinden mi kaynaklandığı önemli bir sorun olarak karşımıza çıkar (3,9,11). Klinik olarak görülürler (Grade I-III) OSBD olan gözlerde %71 siklikla ortaya çıkan görme alan değişiklikleri çeşitli şekillerde görülürler: uygun depresyon, relatif arkuat skotom oluşumu, kör nohta genellemesi, konsantrik daralma. Klinik olarak görülemeyen ancak diske psodopapillödem görünümü veren drușen olan gözlerin ise %25-

Sonuç olarak optik diskin rütin yöntemleri değerlendirilmesinin zarar olduğu dru senin gibi olgularda SLO ve OCT tekniklerinin tanı ve hastalığın izlenmesinde yararlı olabilidine kanısına varılmıştır. Göreme alanlarında genel hassasiyet azalması dışında herhangi bir kayıp olmanın grade I druensi gözlerde SLO ve OCT ile tespit edilmesi sinir lifi kalınlığında azalma belki de gelecek bu hastalarda ortaya çıkacak olan kanıtlarının ön cüktü olabilir.

KAYNAKLAR

5. Tsai MOM: Pathology and pathogenesis of drusen of the optic nerve head. Ophthalmology 1981;88:1066-80

10. Heidelberg Retina Tomograph Operation Manual Software version 2.01 Heidelberg Engineering GmbH page 3-4

12. Roh S, Noecker RJ, Schuman JS: Evaluation of coexisting optic nerve head drusen and glaucoma with optical coherence tomograph Ophthalmology 1997;104: 1138-1144

17. Lansche RK, Rucker CW: Progression of defects in visual fields produced by hyaline bodies in optic disks Arch Ophthalmol. 1957;58:115-121

