Glokomlu ve Głokomsuz Migren Hastalarında Optik Sinir Başı Topografisi ve Görme Alani Duyarlığı

Yusuf Akar (*), İclal Yücel (**), Babür Dora (***) , Alper Özel (****), Canan Özdemir (****)

ÖZET

Amaç: Migren hastalarının optik sinir başı (OSB) topografilerinin glokomlu ve normal toplumlara karşılaştırılması, ve görme alanı tekrarlanabilirliklerinin belirlenmesi.

Bulgular: Migren (n:96), glokom (n:99) ve normal (n:102) olguların yaş ortalamaları arasında anlamlı bir fark bulunmamıştır. Çevrim ortalamaları sırasıyla 2.37, 2.29 ve 2.01 mm² olarak saplandı (p>0,05). Disk alanı dışında, incelenen tüm parametrelerde migren grubu glokolu ve normal olgulara anlamlı olarak farklı bulundu. Disk alanı 2 mm² - 2,25 mm² arasında değişen olgular değerlendirildiğinde, migren hastalarının tüm OSB parametrelerinde glokom grubundan farklı bulunurken, normal gruba göre 'Çukur şekli ölçüyü' dışında hiçbir parametrede farklılıklar saptanmadı. Göreme alanı duyarılık ölçüm varyasyon katsayıları, migrenli hastalarda normal olgulardan anlamalı olarak yüksek saplandı (p>0,05).

Sonuç: Migren hastalarının optik disk alanı, glokom grubundan farklı izlenmekten normal olgulardan anlamalı olarak büyük sapmıştır. Bu hastaların, görme alanı ortalamada duyarılıkları değerleri ve ölçüm tekrarlanabilirliklerinin normal gruptan anlamalı olarak dışık bulunması, özellikle glokom şaphesinde izlenen migrensi hastaların takiplerinde akılda tutulmalıdır. Çukur şekli ölçüyü parametresi migren hastalarının normal basınçlı glokom risklerini değerlendirirmede kullanılabılır.

Anahtar Kelimeler: Migren, Primer açık açılı glokom, Normal toplum, Optik sinir başı toplografi, Göreme alanı tekrarlanabilirliği
SUMMARY
Optic Nerve Head Topography and Visual Field Sensitivity of the Migraine Patients With or Without Glaucoma

Aim: To compare the optic nerve head topography of the migraine subjects with those of the glaucoma and the normal population, and to determine the reproducibility of perimetric tests.

Material and Methods: Migraine patients, who are followed up by Neurology department at least for three years, and the normal subjects, with no systemic and the ocular problems other than the refractive error, and the primary open angle glaucoma patients are included in the study. The optic nerve head topographic measurements were performed using the HRT II (Heidelberg Retinal Tomograph II). Subjects underwent at least two perimetric analysis with the Humphrey visual field analyser central 30-2 program full threshold strategy. The perimetric analysis were repeated in case of the presence of the glaucomatous visual field defects. Regional visual field mean sensitivity (MS), coefficient of variation values in four different visual field quadrants (upper temporal, lower temporal, upper nasal and the lower nasal) of randomly selected normal (n=22) and migrainous subjects (n=21) were compared using 5 separate tests during a 4-week period. The disc area, topography standart deviation, a total of 11 topographic parameters and the MS, mean deviation (MD) and the corrected pattern standard deviation (CPSD) values of the each subject were assessed.

Results: The mean age of the migraine (n:96), glaucoma (n:99), and the normal subjects (n:102) were not found to be significantly different (p>0.05). The mean disc area of the three groups were found to be 2.37, 2.29 ve 2.01 mm², respectively (p<0.05). All of the optic nerve head topographic parameters of the migraine patients were found to be significantly different than the glaucoma and the normal subjects. Migraine patients were found to be significantly different than the glaucoma cases for all the parameters studied when the subjects with the disc areas changing only between 2 mm² - 2.25 mm² whereas there were no significant difference in between migraine and the normal cases other than cup shape measure than. The visual field MS coefficient of variation values were found to be statistically higher in migraine patients (p<0.05).

Conclusion: Migraine patients were found to have an optic disc area which is similar to those of the glaucoma, and is significantly larger than that of the normal cases. The clinicians should take the present finding into consideration that the visual field sensitivity and its reproducibility of the migraine patients were significantly worse than that of the normal subjects in the clinical follow-up of migrainous patients followed with glaucoma suspicion. The parameter cup shape measure can be used for the assessment of such patients for the normal tension glaucoma.

Key Words: Migraine, Primary open angle glaucoma, normal population, Optic nerve head topography, Visual field reproducibility.

GİRİŞ

Toplumun yaklaşık olarak % 10 oranındaki kişinin aktif migraine hastası olduğu saptanmıştır. Bu oranın erkeklerde %6 kadınlarda ise %15 olarak gösterilmiştir (1). Bu kadar sık rastlanmasına rağmen migren hastalarının en az üçte ikili bir kısım bir hekimin başvurularına veya hekim kontrolünü sürdürdüğü gösterilmiştir (2). Literatürde yapılan diğer çalışmalar da, migren ve glokomun ortak damar bozuklıklarına bağlı olarak ortaya çıkanların iddia eden yayınlar mevcuttur (3). Migren hastalarında standart akromatik perimetre ile %20 ile 40 arasında (4-6), flicker perimetresi ile %67 oranında (7) görme alanı kayıpları saptanmıştır. Literatürde birçok çalışmada görsel aural klasisig migrenli hastalarda ve baş ağrıısı sırasında görsel aural migrenlilerde anterior optik nöropatinin varlığı bildirilmiştir (8-10). Bu nedenlerle, bu hastalarda, tekrarlanan perimetrik ölçümlerde optik sinir ve retina sinir lifieri harabiyeti olmuğdu sürecek aynı görme alanı eşik duyarlılık ölçümlerininde elde edilmiş (ölcüm tekrarlanabilirliği), meydana gelebilecek optik sinir ve sinir lifieri harabiyetinin daha erken dönemde tari ve tedavisine imkan verecektir. Çalışmanınida, migren hastalarının optik sinir başı (OSB) topografi-
lerinin glokomlu ve normal toplumlarla karşılaştırılması, ve görmeye alanı duyarlılık ölçüm tekrarlanabilirliğin normal toplumdan farklılıklarının belirlenmesi amaçlandığı.

GEREC VE YÖNTEM

Görme keskinliği 0,8'ın altında, belirgin lens kesafeti, nörolojik rahatsızlığı bulunan, görme alanını etkileyecek iki kullanıp ve konjenital renk körülüğü olanlarla, pupilla 2.5 mm'den küçük olanlar ve Humphrey güvenilirlik kriterleri dışlık olanlar (%20'ın üzerinde fiksasyon kaybı, ve %33'ün üzerinde yanılış pozitif veya yanlış negatif oranları olanlar), kırma kusuru I D silindirik ve 5 D sferik değerlerden yüksek olanlar ve optik sinir başı topografi standard sapması 40 'dan yüksek olan gözlere karşılamaya dahil edildi. Tüm olguların, en iyi düzeltilmiş görme keskinliği, kırma kusuru, keratometri değerleri belirlendi. Goldmann appplanation tonometreleriyle sabah 9 ile 10 arasında hastaların gözlüğü basıncı ölçüldü. Slit-lamba biyomikroskopi ile ön segment, ve + 78 D lens kullanılarak optik sinir başı ve fundus muayeneleri gerçekleştirilir.

Tarama işlemini HRT II (Heidelberg Retinal Tomograph II, Software Version 1.5, Heidelberg Engineering, Heidelberg, Germany) ile yapıldı. Tarama 15 x 15 derecelik açıda referans düzlemi 50 alınan yapılmıştır. Taramadan sonra optik disk kontur çizgisi, tüm olgular için aynı gözlemci (AÖ) tarafından ortalamaya 6-8 nokta işaretlenerek çizilmiştir. Topografik ölçümün öncesi olgulara ait keratometri ve kırma kusuru değerleri girilmiştir.

HRT II, optik disk ve retina düzlemine 780 nm dalga boyunda diod laser yansıtarak her biri 384 x 384 pikselden oluşan arldığı 64 ayrı görüntü kesit düzlemlerini analiz etmek suretiyle, optik sinir başını üç boyutlu topografik analizini gerçekleştirmektedir (12). Beş saniyeden az bir sürede her biri 64'er görüntüten oluşan üç aya tarama, otomatik olarak gerçekleştirelir optikal veri hesaplanmaktadır. Yaklaşık 167,000 yükseklik ölçülerine hesaplanır. Çalışmamızda, HRT II tarafından; topografi standart sapması (μ), disk alanı (mm²) ve top- lam 11 farklı optik sinir başı topografi parametreleri hesaplandı: [çıkart alanı (mm²), rim alanı (mm²), çıkart hacmi (mm³), rim alanı / disk alanı oranı (RA / DA), lineer çıkart / disk oranı, ortalamalı çıkart derinliği (mm), maksimum çıkart derinliği (mm), çıkart genel oluşması, ortalamada retina sinir lifi tabakası kalınlığı (mm) ve retina sinir lifi tabakası kesit alanı (mm²)].

Perimetri testleri, Model 750 Humphrey Alan Analizörü-II (Humphrey Instruments Inc, San Leandro, California) kullanılan gerçekleştirildi. Tüm testler Humphrey perimetry kitapçığındaki kullanım kilavuzuna yapılıp. Görme alanı analizi, 31.5-apostil²/m² aydınlatmalı zeminde, III'ü büyüküküte uyardı (0.43° çapında) kullanılarak santral 30-2 programında Tam Eşik (Full Threshold) algoritmada yapıldı. Görme alanına her bir birbirinden eşit mesafeye (6°) ayrılrılmış olan santral 30°'deki 74 farklı test noktalarının eşik duyarlılıklarını test edildi. Olguların fiksasyonları, test boyunca görece pe- rimetri teknikleri tarafindan kontrol edildi. Program ta-

| Tablo 1. Migren hastalarının gözlüğü basıncı, keratometri, kırma kusuru ve görme alanı indekslerinin glokomlu ve normal olglarlara karşılaştırılması |
|---|-----------------|-----------------|-----------------|---|
| Migren (n: 192) | Glokom (n: 198) | Normal (n: 204) | p |
| ḅ | ḅ | ḅ |
| GİB (mmHg) | 13.4 ± 3.6 | 23.5 ± 3.5 | 16.4 ± 1.5 | <0.05 |
| Keratometri (D) | 41.99 ± 1.4 | 42.39 ± 1.3 | 42.97 ± 1.3 | >0.05 |
| Kırma Kusuru (D) | -1.21 ± 1.5 | -1.15 ± 1.4 | -1.09 ± 1.1 | >0.05 |
| MS (dB) | 29.18 ± 1.2 | 25.61 ± 2.5 | 30.79 ± 0.7 | <0.05 |
| MD (dB) | -1.67 ± 1.2 | -5.19 ± 2.5 | -0.49 ± 0.8 | <0.05 |
| CPSD (dB) | 0.79 ± 0.7 | 3.47 ± 1.9 | 0.31 ± 0.4 | <0.05 |

* MS: Ortalama retina eşik duyarlılığı (Desibel, dB)
* MD: Ortalama sapma (Desibel, dB)
* CPSD: Düzeltilmiş patern standart sapma (Desibel, dB)
* D: Dioptri
* n: Göz sayısı
rafından uygulanan Heijl-Krakau kör notka tarama tekrarlığı de figasyonların otomatize olarak test edilmesini sağladım. Testler, hasta güvenilirlik indekslerinin düşük olduğu durumlarda birer kez daha tekrarlandı. Tüm olguların görme alanı ortalama eşik duyarlılık (MS, desibel), ortalamaları (MD, desibel), düzeltim olasılığı standart sapma (CPSD) değerleri ve test süreleri değerlendirildi. Testler, 40 yaş ve üstü bireylerde presbyopi tashhileri gerçekleştirildikten sonra yapılması gerekiyordu. Muhtemel olabilecek bir öğrenme etkisini ortadan kaldırmak maksadıyla ilk görme alanı muayenesinden 3-5 gün sonra gerçekleştirilirken ikinci görme alanı test sonuçları değerlendirilmeye alındı (13). Migren hastalarında, tüm optik sinir başı ve görme alanı muayeneleri hastaların ağrısız ve aurasız dönemlerinde (migren ataklarından en az 7 gün sonra) yapıldı.

Normal (n=22) ve migren olgular (n=21) arasında rastgele seçilen olguların görme alanı testleri 4 haftalık sürede 5'er kez tekrarlanarak görme alanı duyarlılık ölçüm tekrarlanabilirlikleri hesaplandı. Bu olguların görme alanları üst temporal, alt temporal, üst nasal ve alt nasal kadrar olarak dört bölündü. Her kadrarin ortalaması duyarlılık ölçüm varyasyon katsayısı değerleri ayı ayrı edildi.

Normal akromatik perimetrik sonuç; yaş eşleşmesi kontrol olguları göz önune alındığında superior veya inferior kadrnlarda üç veya daha fazla komşu test noktalarında p olasılık değerinin %5'ten daha küçük olmasına, veya aynı bölgede iki komşu test noktası "p" olasılık değerinin %1'den daha küçük olmasına, veya iki veya daha fazla komşu noktalarda 10 dB'den fazla bir eşik farklılık olması olarak değerlendirildi. Ardarda gerçekleştirdikten sonra analizlerde gölgen yan-saha testinin normal olması ve veya CPSD 'p' değerinin %5'ten küçük olduğu ve veya tekrarlayan görme alanı testinde üç komşu noktası (en az birinde p değerinin %1'in altında olup diğer naktalar p değerinin %5'in altında olması) sabit hasanın saptandığı gözler 'göklem' olarak kabul edildiler. Göklotöz defektler, MD değerlerine göre erken, orta şiddetde, ve ilişler har olarak gruplandırıldıkları. MD değerleri -6dB veya daha iyi olanlar erken, -6 ile -12dB arasında değerlendirilir, ortalama dişiler or, -12 dB'den daha ağır olanlar ise ileri hasar olarak kabul edildiler (12).

Çalışmanın istatistiksel analizinde; Student's t testi, tek yönlü varyans analizi, varyasyon katsayısı ve tanımlayıcı istatistikler kullanıldı. P değerinin 0.05'in altında olmasının istatistiksel olarak anlamlı kabul edildi.

BULGULAR

Çalışmada, 102'si normal (54 erkek, 48 kadın) 96'si migrenli (18 erkek, 78 kadın) ve 99'u primer ağız açılı gokolum (58 erkek, 41 kadın) toplam 297 olgunun birer gözləri değerlendirilmeye almındı. Normal, migrenli ve gokolum olgularının ortalamaları sırısıyla 41,6±7,3 yıldır, 42,1±6,9 yıldır ve 41,9±6,8 yıldır olarak saplandı p<0.05. Üç grubun ortalaması gözücü bazıçıkları farklı bulunurken (p<0.05), keratometri ve kırma kusuru değerlerinde anlamlı farklılıklar saptanmadı (p<0.05) (Tablo 1). Migren hastalarının %28,2'sinde aura hikayesi vardı (n:28).

Ortalama optik disk alanları, migren (2,37 mm², min-maks: 1,33-5,23 mm²) ve gokolum (2,29 mm², min-maks: 1,41-4,74 mm²) hastalarında normal olgulardan (2,01 mm², min-maks: 1,23-4,16 mm²) anlamlı

Tablo 2. Migren hastalarının optik sinir başı topografik ölçümüleri gokolum ve normal olgularla karşılaştırılması

<table>
<thead>
<tr>
<th>PARAMETRE</th>
<th>MİGREN (n: 96)</th>
<th>GLOKOM (n: 99)</th>
<th>NORMAL (n: 102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Alanı (mm²)</td>
<td>2,37±0,47</td>
<td>2,29±0,43</td>
<td>2,01±0,37*</td>
</tr>
<tr>
<td>Çukur Alanı (mm²)</td>
<td>0,81±0,46</td>
<td>1,21±0,69*</td>
<td>0,53±0,36*</td>
</tr>
<tr>
<td>Rim Alanı (mm²)</td>
<td>1,55±0,34</td>
<td>1,05±0,39*</td>
<td>1,47±0,29*</td>
</tr>
<tr>
<td>Çukur Hacmi (mm³)</td>
<td>0,21±0,19</td>
<td>0,34±0,27*</td>
<td>0,10±0,15*</td>
</tr>
<tr>
<td>Rim Hacmi (mm³)</td>
<td>0,52±0,14</td>
<td>0,17±0,16*</td>
<td>0,38±0,17*</td>
</tr>
<tr>
<td>Rim / Disk Alanı Orani</td>
<td>0,65±0,19</td>
<td>0,46±0,26*</td>
<td>0,73±0,17*</td>
</tr>
<tr>
<td>Lineer Çukur / Disk Orani</td>
<td>0,41±0,15</td>
<td>0,47±0,16*</td>
<td>0,27±0,17*</td>
</tr>
<tr>
<td>Ort. Çukur Derinliği (mm)</td>
<td>0,33±0,17</td>
<td>0,36±0,16*</td>
<td>0,19±0,09*</td>
</tr>
<tr>
<td>Mak. Çukur Derinliği (mm)</td>
<td>0,73±0,24</td>
<td>0,66±0,29*</td>
<td>0,54±0,27*</td>
</tr>
<tr>
<td>Çukur Şekli Ölçüsü</td>
<td>-0,17±0,16</td>
<td>-0,09±0,09*</td>
<td>-0,21±0,09*</td>
</tr>
<tr>
<td>ORSLTK (mm)</td>
<td>0,29±0,15</td>
<td>0,16±0,14*</td>
<td>0,27±0,09*</td>
</tr>
<tr>
<td>RSLTA (mm²)</td>
<td>1,37±0,43</td>
<td>0,87±0,47*</td>
<td>1,29±0,36*</td>
</tr>
</tbody>
</table>

* İstatistiksel anlamlılık p < 0,05 olarak belirlenmiştir.
* = p < 0,05
* ORSLTK (mm): Ortalama retina sinir lifi tabakası kalınlığı
* RSLTA (mm²): Retina sinir lifi tabakası kesitsel alanı
* Mak.: Maksimum
* Ort.: Ortalama
* n: Göz sayısı
olarak büyük saptandı (p<0,05) (Tablo 2). Disk alanı dışında, incelenen tüm parametrelerde migren grubu, glokomlu ve normal olgulardan anlamalı olarak farklı bulundu (Tablo 2). Migrenli, glokomlu ve normal olguların ortalaması RA / DA oranları sırasıyla 0,65 ± 0,19, 0,46 ± 0,26 ve 0,73 ± 0,17 olarak saptandı (p<0,05) (Tablo 2).

Benzer disk alanı olgular değerlendirdiğinde (disk alanı 2 mm² - 2,25 mm² arasında olanlar) (n=141), migren grubundaki hastaların, disk alanı dışındaki tüm opikinın bağı topografik parametrelerinde glokomlu olgulardan yine anlamalı olarak farklılıklar gösterdiği saptandı (p<0,05) (Tablo 3). Benzer disk alanı migrenli hastalar ve normal olgular karşılaştırıldıkları ise, çukur şekili ölçüldüğü dışında hiçbir parametrede anlamalı farklılıklar bulunmadi (p>0,05) (Tablo 3).

Her üç grubun görme alanı ortalaması MS, MD ve CPSD değerleri Tablo 1'de karlaştırılmıştır. Migren hastalarının görme alanı ortalaması MS değerleri normalde göre anlamalı ölçüde düşük bulundu (p<0,05) (Tablo 1). Migrenli olguların %13,5%inde (n=13) glokomatöz kayıp saptandı. Bu olguların göz içi basınçlarının (n=13), en az üç kez tekrarlanan ölçümler sonucunda, %76,9'unda (n=10) 21 mm Hg'nin altında, %23,1'inde ise 23 mm Hg'lin üstünde olduğu saptandı.

Görme alanı duyarlılık ölçüm varyasyon kayıtları, migrenli hastalarda normal olgulardan anlamalı olarak yüksek saptandı (p<0,05) (Tablo 4). Glokomatöz değerlendirme alanı kayıplı migren hastalarının (n=7) görme alanı duyarlılık ölçüm tekrarlanabilirlikleri, bu tür kayıp göstermeyen migrenli hastalardan (n=14) anlamalı olarak daha düşük saptandı (p<0,05) (Tablo-4). Görme alanı kadrânın arasında duyarlılık ölçüm tekrarlanabilirliklerinde hem normal olgularda hem de migren hastalarda anlamalı farklılıklar bulundu (p<0,05) (Tablo 4).

TARTIŞMA

Üretmen ve ark.(14), migren tanışyla izledikleri toplam 54 hasta yaptıkları klinik ve görme alanı analizleri sonucunda üçlü yüksek ve üç normal basıncı olmak üzere toplam altı hastaya (%11,1) glokom tanısı koydularını bildirmişlerdir. Corbett ve ark.(15), düşük basıncı glokom tanılayıcı izledikleri toplam 27 hastanın 12'sinde adı veya klasik migren hikayelerinin bulunduğu saptanmıştır. Klasik migrenin prodromal döneminde, beyin kortekside bölgesel kan akımının azalığı olarak azalığı göstermiştir (16). Ara ürünlerde gerçekleştirdiği timografik çalışmalarında, olijemünün bir oksipital lobdan başlayıp ipsilateral hemisfere doğru daki kıkırdak 3-4 mm hızla yayıldığı gösterilmiştir (17). Literatürde birçok çalışmada gözlerce klasik migrenli hastalarda ve baş ağrı seyrinden gözsel acı migrations gelişi antet ipuçları varlığının olduğu bildirilmiştir (8-10). Çalışmanınızda, migren hastalarının optic sinir başı (OSB) topografilerinin glokomlu ve normal toplumları karşılaştırılması amaçlandı.

Çalışmanınında, migren ve glokom hastalarının ortalaması optik disk alanları normal olgulardan anlamalı olarak büyük saptandı. Migren hastalarının görme alanı ortalaması MS değerleri normalde göre anlamalı ölçüde düşük bulundu. Migrenli olguların %13,5'inde glokomatöz kayıp saptandı. Bu olguların %76,9'una, normal basıncı glokom tanısı konuldu.

<table>
<thead>
<tr>
<th>PARAMETRE</th>
<th>MIGREN (n: 45)</th>
<th>GLOKOM (n: 42)</th>
<th>NORMAL (n: 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Alanı (mm²)</td>
<td>2,17 ± 0,42</td>
<td>2,14 ± 0,47</td>
<td>2,14 ± 0,37</td>
</tr>
<tr>
<td>Çukur Alanı (mm²)</td>
<td>0,53 ± 0,46</td>
<td>1,11 ± 0,63*</td>
<td>0,51 ± 0,38</td>
</tr>
<tr>
<td>Rim Alanı (mm²)</td>
<td>1,65 ± 0,29</td>
<td>1,04 ± 0,41*</td>
<td>1,63 ± 0,26</td>
</tr>
<tr>
<td>Çukur Hacmi (mm³)</td>
<td>0,11 ± 0,11</td>
<td>0,29 ± 0,24*</td>
<td>0,09 ± 0,12</td>
</tr>
<tr>
<td>Rim Hacmi (mm³)</td>
<td>0,42 ± 0,18</td>
<td>0,13 ± 0,18*</td>
<td>0,43 ± 0,16</td>
</tr>
<tr>
<td>Rim / Disk Alanı Oranı</td>
<td>0,77 ± 0,13</td>
<td>0,49 ± 0,19*</td>
<td>0,78 ± 0,10</td>
</tr>
<tr>
<td>Linear Çukur / Disk Oranı</td>
<td>0,27 ± 0,19</td>
<td>0,44 ± 0,23*</td>
<td>0,27 ± 0,21</td>
</tr>
<tr>
<td>Ort. Çukur Derinliği (mm)</td>
<td>0,23 ± 0,10</td>
<td>0,28 ± 0,18*</td>
<td>0,22 ± 0,09</td>
</tr>
<tr>
<td>Mak. Çukur Derinliği (mm)</td>
<td>0,62 ± 0,27</td>
<td>0,57 ± 0,22*</td>
<td>0,63 ± 0,29</td>
</tr>
<tr>
<td>Çukur Şekili Ölçüsü</td>
<td>-0,14 ± 0,15</td>
<td>-0,09 ± 0,11*</td>
<td>-0,23 ± 0,08*</td>
</tr>
<tr>
<td>ORSLTK (mm²)</td>
<td>0,31 ± 0,17</td>
<td>0,18 ± 0,11*</td>
<td>0,30 ± 0,19</td>
</tr>
<tr>
<td>RSLTA (mm²)</td>
<td>1,33 ± 0,43</td>
<td>0,84 ± 0,51*</td>
<td>1,33 ± 0,47</td>
</tr>
</tbody>
</table>

- İstatistiksel anlamalı p < 0,05 olarak belirlenmiştir.
- * p < 0,05
- ORSLTK (mm²): Ortalama retina sinir lifi tabakası kalınılığı
- RSLTA (mm²): Retina sinir lifi tabakası kesitSEL alanı
- Mak: Maksimum
- Ort: Ortalama
- n: Göst sayısı
Tablo 4. Migren hastaları ile normal olguların görme alanı bölgesel ortala daha büyük olup saptanmıştır (18,19). Čursveten ve ark.(20), düşük basınçlı ve primer achen açılı gökçim, okuler hipertansif ve normal bireyler üzerinde gerçekleştirdikleri çalışmalarında düşük basınçlı gökçim ve migren arasında ortak bir vasküler etyolojinin olabileceğini öne sürmüşlerdir. Daha büyük disk alan olgularda lokal hipoperfüzyon sonrasında lamina ve prelamina bölgelerde daha uzun difüzyon mesafelerinin mevcudiyeti nedeniyle gökçim hasara daha yatık olduklarını ileri sürmüştür (21,22). Lamina kribrosanın çapında meydana gelebilecek küük bir artışın, hücre diş matrisi elemanlarından kalıfat özellik değişiminlerinden dolayı retina sinir lifi aksanlarını düşük güçlü başlangıç artışlarına daha hassas hale getireceği bildirilmiştir (19,21).

Migren grubu, optik disk alanı dışında incelenen tüm parametrelerde gökçim ve normal olgulardan anlam olarak farklı bulundu. Disk alanlarındaki farklılığa bağlı olarak grupları OSB topografilerinde farklıluğu ortadan kaldırmanız için disk alanı 2-2,5 mm² arasında değişen olgular tekrar değerlendirildiğinde migren grupunun, optik disk alanı dışında tüm OSB topografik parametrelerinde gökçim olgulardan yine anlamli farklılıklar gösterdiğini saptadı. Fakat, normal grupla araştırmada çok kez elevasyi dışında hiçbir parametrede anlamli farklılıklar bulunmadı. Uçhida ve ark., çok kez elevasyi parametresinin normal olguları gökçim hastalarından ayrılmasında duyarlılığının %83, ayrımcılığının ise %86 olduğu bildirilmişdir (22). Lester ve ark., 97 normal ve 129 gökçimli gözde gerçekleştirdikleri çalışmalarında, çok kez elevasyi’nin normal olguları gökçim olguların dış parametre olarak saptanmaya (23).

Migren hastalarının görme alanı ortalama daha büyük elevasyı tekrarlanabilirlikleri her dört perimetr kadranında da normal olgulardan anlam olarak farklı bulundu. Elevasyı tekrarlanabilirlikleri bu azağının gökçim benzeri görme alanı kayıpları gösteren migrenli hastalarda da daha fazla olduğu saptandı. Bu durum, bu hastalarda elde edilen elevasyı sonuçlarının genellikliğini zorlayabilir. Migren hastalarının görme alanı ortalama MS değerleri her dört kadran da normal olgulardan anlam olarak düşük bulundu. Migren hastalarının görme alanı ortalama MS değerleri, dört kadran arasında farklı saptanmadı. Migren hastalığının tekrarlayıcı testi aşı(12,185),(999,815)

Drummond ve Anderson (29), migren atradığında 7 gün sonra aural migrenli hastalarda görme alanı performanslarında düzelmeye saptanmıştır. Bu nedenle bu tür migren rahatsızlığı olan hastalarda migren baş ağrılarının 8 gün geçtikten sonra görme alanı ölçümleri gerçekleştirdi. Bu şekilde oğlunun kullanılması, yorganıklık ve bulanının neden olabileceği görme alanı bozukluklarının önüne geçilemeye çalışıldı.

Sonuç olarak, migren hastalarının optik disk alanları, gökçim grubundan farklı ilemezken normal olgulardan anlam olarak büyük saptanmıştır. Çok kez elevasyi parametresi migren hastalarının normal toplumda aynıdır ve normal basançlı gökçim risklerini değerlendirmedi kullanabilir. Migren hastalarının, görme alanı ortalama duyarlılık elevasyı tekrarlanabilirlikleri her dört perimetr kadranında da normal olgulardan anlam olarak düşük bulunmaktadır. Özellikle normal basançlı gökçim şafak mide ile zilenen migren hastalarında bu du-
rum akılda tutulmalıdır. Bu konuda görmek alan ve OSB
topografik takiplerin yapılacağı ileri propektif klinik
çalışmalara ihtiyaç vardır.

KAYNAKLAR

1. Russell MB ve Olesen J: A nosographic analysis of the
migraine aura in a general population. Brain 1996; 119:
355-361

2. Lipton RB, Stewart WF: Epidemiology and comorbidity
of migraine. In: Goadsby PJ, Silberstein SD, eds. Head-

3. Drance SM, Douglas GR, Wijisman K, Schulzer M, Brit-
ton, RJ: Response of blood flow to warm and cold in
normal and low-tension glaucoma patients. Am J Ophthal-
mol 1988; 105: 35-39

4. Lewis RA, Vijayan N, Watson C, Keltner J, Johnson CA:
Visual field loss in migraine. Ophthalmalogy. 1989; 96:
321-326

5. McKendrick AM, Vingrys AJ, Badcock DR, Heywood
JT: Visual field losses in subjects with migraine head-

6. De Natale R, Polimeni D, Narbone MC, Scullica MG, Pe-
lcano M: Visual field defects in migraine patients. In:
Mills RP, ed. Perimetry Update 93/94. Amsterdam, the
Netherlands: Kugler Publishers; 1994: 283-284

7. Anderson DR: Glaucoma, capillaries and pericytes. I.
Blood flow regulation. Ophthalmologica 1996; 210: 257-
262

Ophthalmol. 1982; 14: 164-166

9. Katz B: Bilateral sequential migrainous ischemic optic

11. Headache Classification Comittee of the International He-
adache Society. Classification and the diagnostic criteria
for headache disorders, cranial neurogias and facial pain.
Cephalalgia. 1988; 8: 1-96

Pandey RM: Variables affecting test-retest variability of
Heidelberg Retina Tomograph II stereometric parameters.
Journal of Glaucoma 2002; 11: 321-328

experience in normal subjects Arch Ophthalmol 1989;
107: 81-86

D: Migrenli hastalarda glokom araştırılması. MN Oftal-
moloji. 2000; 7: 154-157

15. Corbett JF, Phelps CD, Estinger P, Montague PR: The
neurological evaluation of patients with low tension glau-

16. Olesen JL, Arsen BL, Auritzen M: Focal hyperemia fol-
lowed by spreading oligemia and impaired activation of

17. Olesen J: The ischemic hypothosis of migraine. Arch Neu-
rol 44:321-322 Arch Clin Exp Ophthalmol 1987; 226:
224-226

optic nerve heads susceptible to glaucomatous damage at
normal intraocular pressure? Graefe's Arch Clin Exp
Ophthalmol 1992; 230: 552-60

19. Tuulonen A and Airaksinen PJ: Optic disc size in exfolia-
tive, primary open angle and the low tension glaucoma.

P, Korth M: Migraine and glaucoma in high tension and
normal pressure glaucoma. Am J Ophthalmol 2000; 129:
102-104

metry of optic disc size and its relevance to visual field
loss in normal-tension glaucoma. Graefe's Arch Clin Exp
Ophthalmol 1994; 232: 290-6

22. Uchida H, Brigatti L, Caprioli J: Detection for structural
damage from glaucoma with confocal laser image analy-

operating curve analysis of Heidelberg Retina Tomograph
optic disc shape measures in glaucoma. Can J Ophthal-
mol 1997; 32: 382-388

24. M Lauritzen: Pathophysiology of the migraine aura: the

25. M Lauritzen, T Skyhøj, Olsen, NA, Lassen and OB Paul-
son. Changes in regional cerebral blood flow during the
course of classic migraine attacks. Ann Neurol 1983; 13:
633-641

weighted imaging during migraine: Spontaneous visual aura
and headache. Cephalalgia 1999; 19: 701-707

provoc ocular diseases? Angiology 1990; 41: 213-220

28. Flammer J: Psychophysical mechanisms and treatment of
vasospastic disorders in normal-tension glaucoma. Bull
Soc Belge Ophthalmol. 1992; 244: 129-134

29. Drummond PD, Anderson M: Visual field loss after at-
tacks ofmigraine with aura. Cephalalgia. 1992; 12: 349-
352