A Rare Cause of Hyperinsulinemic Hypoglycemia: Kabuki Syndrome

Running Title: Hyperinsulinism in Kabuki Syndrome

Mina Mısırlıgil1*, Yılmaz Yıldız2, Onur Akın3, Sevinç Odabaşı Güneş3, Mutluay Arslan4, Bülent Ünay4

1Department of Pediatrics, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
2Department of Pediatric Metabolic Diseases, University of Health Sciences, Gulhane Medical Faculty, Dr. Sami Ulus Training and Research Hospital, Ankara, Turkey
3Department of Pediatric Endocrinology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
4Department of Pediatric Neurology, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey

What is already known on this topic?
KS patients with KMT2D gene mutations develop symptoms like facial dysmorphism, neonatal feeding problems, kidney anomalies, and skeletal malformations, whereas KS patients with KDM6A mutations have a higher risk of hyperinsulinemic hypoglycemia.

What this study adds?
The presented case is very rare because the infant had a mutation in KMT2D but presented with HH.

Abstract
Kabuki syndrome (KS) is a disease characterized by distinctive facial features, skeletal anomalies, and delay in neuromotor development. KS 1 is an autosomal dominant condition caused by mutations in the KMT2D gene, whereas KS 2 is an X-linked disorder caused by mutations in the KDM6A gene. In the majority of KS patients who present with hypoglycemia, KDM6A is the defective gene. A 9-month old girl was admitted to our emergency department due to a seizure. In the physical examination, hypotonia, mild facial dysmorphism, brachydactyly of the 5th finger, prominent finger pads and pansystolic murmur were detected. A fasting tolerance test was performed on the next day due to her history of hypoglycemia, but she had convulsions at the 5th hour of the test. Her serum glucose was 24 mg/dL, insulin 1.94 mIU/L, C-peptide 0.94 ng/mL, growth hormone 11 ng/mL, anti-insulin antibody 4.2 IU/mL, cortisol 19.8 µg/dL, and ACTH 9.3 pg/mL. A diagnosis of hyperinsulinemic hypoglycemia was considered. Given the abnormalities, genetic analysis for congenital hyperinsulinism, including the genes causing Kabuki Syndrome was performed. A heterozygous frameshift mutation (c.2579del, p.Leu860Argfs*70) was detected in the KMT2D gene. Epilepsy and other neurological symptoms may be seen in KS patients. In some cases, the neurological symptoms are the results of hypoglycemia. In such cases, the detection and prevention of hypoglycemia can help prevent the progression of neurological symptoms. We suggest considering the diagnosis of KS for patients with hypoglycemia and dysmorphic features, even if the patient does not manifest all features of KS.

Keywords: Diazoxide, hyperinsulinemic hypoglycemia, Kabuki syndrome, KMT2, KDM6A

Mina Mısırlıgil MD, Department of Pediatrics, University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
+905352266644
drminsirligil@gmail.com
0000-0002-7922-5514
02.04.2020
10.08.2020

Introduction
Kabuki syndrome (KS) is a rare congenital syndrome first described by Niikawa and Kuroki in 1981.12 Its prevalence is 1:32,000 in Japan, and 1:86,000 in Australia and New Zealand.3,4 In approximately 85% of KS patients, mutations in either KMT2D gene (previously known as MLL2) located at 12q13.13 (autosomal dominant) or KDM6A gene located at Xp11.3 (X-linked dominant) were identified.5–9 There are five cardinal criteria for the diagnosis of KS: postnatal short stature, mild to moderate developmental delay/intellectual disability, distinctive facial features, skeletal abnormalities, and persistent fetal fingertip pads.3,10,11 Other symptoms, including hypoglycemia, congenital heart defects, congenital hypothyroidism, seizures, hypotonia, and gastrointestinal problems, might be seen infrequently.12 Here, we present a Turkish female infant with KS who manifested with hyperinsulinemic hypoglycemia.

Case Report
The patient was a female infant, born as the second child of healthy, non-consanguineous parents at 32 weeks of gestation by an uncomplicated cesarean section. Her birth weight was 2410 grams [2.20 standard derivation score (SDS)]. She was hospitalized because of prematurity, respiratory distress syndrome and indirect hyperbilirubinemia. Hypoglycemia developed within the first few days of life due to hyperinsulinism (serum insulin 181.5 mIU/L and concurrent glucose 37 mg/dL). She was initially treated by intravenous glucose infusion (up to 15 mg/kg/min) and oral diazoxide. After achieving normoglycemia with oral feeding, diazoxide was eventually discontinued. Subsequently, neonatal transient hyperinsulinism was considered and no other treatment was initiated. She also had a ventricular septal defect (VSD) along with patent ductus arteriosus. The karyotype analysis was found to be 46,XX. After 45 days, she was discharged and given furosemide and captopril to address cardiac problems.
At the age of nine months, she was admitted to the pediatric emergency department of our hospital because of somnolence after a seizure. Weight, height, and head circumference were 6760 grams (–1.93 SDS), 71 cm (–0.07 SDS), and 39.8 cm (–3.59 SDS), respectively. Hypotonia, pansystolic murmur, facial dysmorphic features (wide forehead, arched and sparse eyebrows, ptosis, eversion of lateral third of inferior eyelids, short columella), persistent fetal pads, and brachydactyly of fifth fingers were observed in the physical examination (Figure 1). Biochemical tests and EEG were found to be normal. A fasting tolerance test was performed due to the history of hypoglycemia. She developed hypoglycemic convulsion at the 5th hour of the fasting test. The capillary blood glucose was 32 mg/dL. Critical blood and urine samples were collected. Hypoglycemia was treated by intravenous bolus injection of 0.2 g/kg dextrose, followed by an infusion at the rate of 8 mg/kg/min. The patient improved rapidly with this treatment. The samples collected at the time of hypoglycemia revealed normal blood count, electrolytes, liver, and kidney functions. Serum glucose was 24 mg/dL, insulin 1.94 mIU/L, C-peptide 0.94 ng/mL, growth hormone 11 ng/mL, anti-insulin antibody 4.2 IU/mL, cortisol 19.8 µg/dL, and ACTH 9.3 pg/mL. The levels of blood carnitine and acylcarnitines were normal and no ketone bodies were observed in the urinalysis. Skeletal radiographs, and abdominal ultrasound were normal. Based on the fasting test, hyperinsulinemic hypoglycemia was considered and diazoxide treatment was initiated at a dose of 3 mg/kg/day and that the dose was gradually increased to 15 mg/kg/day while tapering down dextrose. Feeding intervals of four hours, and dietary supplementation with uncooked cornstarch was recommended. The patient did not suffer from hypoglycemia under diazoxide therapy. The dysmorphic features, along with VSD and hyperinsulinemic hypoglycemia, prompted for a possible diagnosis of Kabuki syndrome.

Genetic analysis was performed using a next-generation sequencing (NGS) panel, including KMT2D and KDM6A genes which revealed a heterozygous frameshift mutation in KMT2D gene (c.2579del, p.Leu860Argfs*70). The mutation had previously been reported to be associated with Kabuki syndrome in a single case in ClinVar database, confirming the clinical diagnosis. The mutation was considered to be de novo, as the variant was not detected in the molecular genetic analysis of the parents. Informed consent was obtained from the parents for reporting genetic testing and publication of related data.

Discussion

KMT2D encodes a lysine-specific histone methyltransferase and is responsible for over 75% of KS cases. KDM6A encodes a histone demethylase and accounts for 5–8% of KS cases. KS patients with KMT2D gene mutations develop symptoms like facial dysmorphism, neonatal feeding problems, kidney anomalies, and skeletal malformations, whereas KS patients with KDM6A mutations have a higher risk of hyperinsulinemic hypoglycemia. Hyperinsulinism may manifest in various syndromes, especially Beckwith–Wiedemann, but it has rarely been observed in Kabuki, Sotos, Costello, Turner, Simpson-Golabi-Behmel, Ondine, Usher, Peiman and Timothy syndromes, and congenital disorders of glycosylation. Although the frequency of neonatal hypoglycemia in KS is 6.7%, hyperinsulinemic hypoglycemia (HH) is extremely rare (0.3%) in KS. A small cohort study indicated that the incidence of KS in neonates with HH may be around 1%. Moreover, this cohort reported that 45.5% of KS patients who presented with HH, had KDM6A mutations. However, KDM6A mutations were detected in only 5–8% of all KS patients. These data support the fact that there is a higher risk of HH in KS patients with KDM6A mutations compared to those with KMT2D mutations. This makes the presented case very rare because the infant had a mutation in KMT2D but presented with HH, which probably was the cause of the seizure.

KS may not be easily identified in neonates and infants because the characteristic facial features may not yet have become distinct. Similar to our 9-month old patient, KS is usually diagnosed between 6 and 18 months of age. Although KS is very rare, it is important to consider KS in patients with HH to provide genetic counseling and determine the prognosis of hypoglycemia. In fact, in the case of our 9-month old patient, failure to diagnose KS during the neonatal period caused the clinicians to assume that hyperinsulinism was transient. Therefore, diazoxide treatment was discontinued, which might have contributed to the severe re-occurrence of hypoglycemia, accompanied by seizures, loss of consciousness and worsening of neurological damage and of developmental problems. As seen in our case, it is not safe to completely stop diazoxide treatment before excluding any underlying genetic etiology. In the literature, it has been reported that diazoxide treatment may be needed until five years of age to maintain normoglycemia in KS patients with HH. Our patient is currently being continued on diazoxide with proper maintenance of glycemia. Also, the 4-hour interval feeding is being continued, including nocturnal feeds to prevent hypoglycemia.

In conclusion, early detection and proper management of hypoglycemia would help to prevent progression of neurological symptoms and permanent sequelae in KS. Kabuki’s syndrome should be considered in the differential diagnosis of patients with hyperinsulinic hypoglycemia and dysmorphic features, even if the patient does not manifest with all features of the syndrome.

Acknowledgement

Genetic testing was performed by the Department of Molecular Genetics at the University of Exeter Medical School, UK.

References

Fig. 1. A. Facial appearance (wide forehead, arched and sparse eyebrows, ptosis, eversion of lateral third of inferior eyelids, short columella) B. Persistent fetal pads