Clinical Management in Systemic Type Pseudohypoaldosteronism Due to SCNN1B Variant and Literature Review

Running Head: Pseudohypoaldosteronism Due to SCNN1B Variant

Gülin Karacan Küçükali1, Semra Çetinkaya1, Gaffari Tunç2, M. Melek Oğuz2, Nurullah Çelik4, Kardelen Yağmur Akkaş3, Salıha Şenel3, Naz Güleray Lafcı5, Şenay Savaş Erdeve1

1University of Health Sciences Turkey, Dr. Sami Ulus Maternity, Child Health and Diseases Training and Research Hospital, Pediatric Endocrinology Clinic
2Sivas Cumhuriyet University School of Medicine, Department of Child Health and Diseases, Department of Neonatology
3University of Health Sciences Turkey, Dr. Sami Ulus Maternity, Child Health and Diseases Training and Research Hospital, Pediatric Clinic
4Sivas Cumhuriyet University School of Medicine, Department of Child Health and Diseases, Department of Pediatric Endocrinology
5University of Health Sciences Turkey, Dr. Sami Ulus Maternity, Child Health and Diseases Training and Research Hospital, Medical Genetics Department

What is already known on this topic? Pseudohypoaldosteronism is a life threatening disease due to serious salt loss. Differential diagnosis from other adrenal insufficencies is important because the treatments are different. Patient compliance is difficult due to the need for excessive amounts of oral treatments.

What this study adds? We presented a patient with difficult diagnostic process due to hypertension. A novel variant that is causing stop codon was detected in our patient. Also clinical and laboratory features of all cases with SCNN1B variant in the literature were reviewed.

Abstract

Systemic pseudohypoaldosteronism is a rare salt wasting syndrome that is caused by inactivating variants in genes encoding epithelial sodium channel subunits. Hyponatremia, hyperkalemia, metabolic acidosis, increased aldosteron and renin levels are expected findings of this disease. It is difficult to manage this disease due to high dose oral replacement therapy. Furthermore patients with systemic pseudohypoaldosteronism require life-long therapy. Here we report a patient with systemic PHA due to SCNN1B variant whose hyponatremia and hyperkalemia was detected at the 24th hour of life. Hyperkalemia did not improve with conventional treatments and dialysis was required. Also he developed myocarditis and hypertension in follow-up. Difficulties in diagnosis and treatment of this patient were discussed in this report. Also we review the literature on common features of patients with SCNN1B variant.

Keywords: systemic pseudohypoaldosteronism, hyponatremia, hyperkalemia, metabolic acidosis, epithelial sodium channel, SCNN1B

Introduction

Aldosterone is a mineralocorticoid hormone that provides sodium absorbtion and potassium secretion. Sodium crosses the apical membrane in the principal cells in kidney and enters the epithelial cell through the ion selective epithelial sodium channel (ENaC). Potassium is also secreted into the tight epithelium in the kidney. The epithelial sodium channel is located in the apical membranes of the sensitive tissues such as distal nephron, distal colon, salivary and sweat glands and creates a rate-limiting step in sodium reabsorption (1, 2). Epithelial sodium channel is a heteromultimeric protein consisting of 3 subunits, , (3).

ENaC subunits are encoded by SCNN1A genes in chromosome 12p13, SCNN1B and SCNN1G genes in chromosome 16p12.2 – p12.1. Pseudohypoaldosteronism (PHA) is a salt wasting syndrome that develops due to variants in the mineralocorticoid receptor (MR) or ion channels in the kidney tubules. The estimated incidence of this rare disease is between 1/ 47.000 and 1/ 80.000, and its prevalence is <1/ 1.000.000 (4, 5, 6). PHA1 is divided into renal (PHA1A) and systemic (PHA1B) forms depending on mutation in the NR3C2 gene that codes the MR or in the SCNN1A, SCNN1B and SCNN1G genes that code ENaC, respectively. In systemic form, there is serious salt loss from the lung, colon, sweat and salivary glands besides the kidney, and the symptoms begin in the neonatal period. Systemic PHA, which is inherited as autosomal recessively, develops life-threatening hyponatremia, hyperkalemia and metabolic acidosis. Plasma renin and aldosterone levels increase significantly, indicating end organ resistance. Treatment requires high doses of sodium replacement and potassium-lowering approaches. In this article, the clinical management of a patient with PHA due to SCNN1B variant and the common features of patients with SCNN1B variant were presented.

Case Report
The male patient was born 3600 grams on term with NSVD and was followed up in the neonatal intensive care unit due to respiratory distress. It was learned that hyponatremia and hyperkalemia were detected (Na was 132 meq/L, K 7.1 meq/L, PH 7.12, and HCO3 was 10.8 mmol/L). Echocardiography was normal. He was diagnosed with congenital adrenal hyperplasia. Hydrocortisone and fludrocortisone treatments were started. Calcium gluconate, glucose-insulin infusion, NaHCO3 infusion, salbutamol inhalation were administered for hyponatremia and hyperkalemia. Despite these interventions, hyponatremia and hyperkalemia continued. Anti-hypertensive treatment was started for hypertension (0.1 mg/kg/day amlopidine). Oral 2x0.5 grams of salt was also added to the treatment and the dose was gradually increased. The laboratory findings were as follows: TSH 1.22 ug/L, DHEASO4 241.8 µg/dL, total testosterone 215.6 ng/dl, ACTH 255 pg/ml, cortisol 43.8 µg/dl, renin 0.065-0.86, aldosterone 6.4 µg/L. The transtubuler potassium gradient (TTKG) was 1.3, indicating very low renal potassium excretion. Based on the laboratory test results, hydrocortisone and fludrocortisone treatments were discontinued. Urinalysis, urine culture and renal ultrasonography were normal. In this process, hypertension continued. The diagnosis of systemic PHA was considered in the patient who was admitted with hyponatremia and hyperkalemia in the neonatal period, with high aldosterone level, increased urinary Na excretion, decreased K excretion. When hyponatremia did not correspond to conventional treatments (in addition to the above treatments, calcium polystyrene sulfonate was given as 1 gr/dose in four doses) peritoneal dialysis was required. After three days of peritoneal dialysis, K decreased to 4.18 meq/L. Electrolyte values of the patient were kept in the normal range with 6x1 g of oral salt and 4x3 g of antipotassium treatment. The patient had fever during the follow up. But although the body temperature was normal afterwards the tachycardia resisted. The patient was diagnosed with myocarditis due to an increase in the acute phase reactants, troponin I level and electrocardiographic findings. Myocarditis findings regressed on the 10th day. On the other hand, the cause of hypertension could not be explained and was thought to be related to the salt treatment. Then their blood pressure returned to normal ranges and amlopidine and propranalol treatments were discontinued on the 14th day. The Sanger sequencing analysis of the SCNN1A gene, which is the most common gene that is mutated in systemic PHA Type1B, was found to be normal. In subsequent Illumina MiSeq sequencing, a homozygous c. 978 C > A (p.Tyr326Ter) variant was detected in the 6th exon of the SCNN1B gene (NM_000336). After oral salt (6x1g) and antipotassium (4x3g) administration, the patient had normal electrolyte values and was discharged. One month after discharge, during an infection period the patient had to be hospitalized again due to the loss of oral intake and salt wasting crisis. At the last control, the patient was 7 months old, his weight was 7.3 kg (-1.3 sds), height was 68 cm (-0.83 sds) and blood pressure was 80/35 mmHg (50%). His growth and development was appropriate for the age with the current treatments (6x1 gr oral salt, 4x3 gr antipotassium (calcium polystyrene sulfonate), 4x2 ml NaHCO3). It was planned to continue the clinical follow-up.

Discussion

Systemic PHA type 1 is a rare life-threatening disease. Clinical manifestations are similar to other adrenal gland insufficiencies, such as congenital adrenal hyperplasia, hypoaldosteronism, secondary pseudohypoaldosteronism. The clinical presentation is characterized with insufficient weight gain, vomiting, and dehydration (4, 6, 7). Our patient had normal genitalia with hyponatremia, hyperkalemia. Hydrocortisone and fludrocortisone treatments were started until adrenal androgen results were obtained. Since adrenal hormone levels were normal in the follow-up, the patient was diagnosed with PHA1B. In the differential diagnosis of our patient, transient aldosterone resistance secondary to urinary tract infection was also considered (4), and this diagnosis was ruled out when urinalysis, urine culture and renal ultrasonography were normal. Elevated aldosterone level accompanying hyponatremia and hyperkalemia supported resistance to aldosterone in the kidney and directed the treatment of our patient. To date, more than 40 variants have been reported in the genes encoding ENaC subunits (7), and these variants have often been found in the gene encoding the alpha subunit. Less than 11 variants have been reported in the gene encoding the beta subunit (Table 1). In our patient, we first investigated the SCNN1A gene encoding alpha subunit, but when we did not detect a pathogenic variant, we sequenced the SCNN1B gene. In our patient, a novel c. 978C > A (p.Tyr326Ter) homozygous variant was detected presumably forming an early stop codon in the SCNN1B gene. This variant has not been previously reported in the literature or in the GnomAD database including genome data from healthy individuals, and is anticipated to be a pathogenic change by Variant Taster, one of the in silico assessment tools used to predict pathogenicity of a variant. In addition, this change has been considered pathogenic according to the criteria of ACMG 2015 (PV51, PM2, PP3). SCNN1B gene consisting of 13 exons encodes a transmembrane protein with 2 transmembrane segments with 640 amino acids (Figure 1) (7). The detected variant is located in the extracellular part of the protein, and, it is estimated cause loss of function by creating an early stop codon presumably resulting in nonsense mediated decay at the mRNA level. **Figure 1 is presented in a separate file.**

To date, 11 variants with PHA due to SCNN1B variants have been reported (Table 1). These cases were diagnosed in infancy with classical findings. In follow-up, one case died due to salt wasting crisis (6, 8). In four cases, there were skin manifestations such as dry skin, seborrheic dermatitis and hirudinoida suppurativa (7, 10, 11). Recurrent lung infections developed in four cases (7, 11, 12, 13) and gastrostomy was required in four cases due to the salt wasting (6, 10, 11, 13). Pulmonary hypertension developed in 1 case during follow-up (11). No other cases except for our developing viral myocarditis and hypertension were encountered during attacks. Both urgent and long-term treatments of pseudohypoaldosteronism involve many difficulties. Hyperkalemia can be life threatening due to the risk of cardiac arrhythmia. In the literature, similar to our case, there were cases where peritoneal dialysis should be opened due to hyperkalemia (7, 14, 15, 16). Cases requiring gastrostomy due to difficulties in continuing oral treatment have been reported (4, 5, 8, 10, 11, 13, 15). Patients with pseudohypoaldosteronism are prone to pulmonary infections due to a decrease in sodium-dependent fluid absorption in the lungs. Rapid decomposition may occur in infections or in the clinical situation where oral intake is impaired. After the electrolyte balance was achieved in the follow-up of our patient, salt wasting occurred again due to intervening viral myocarditis, and during this period, the patient's treatments could be administered with a nasogastric tube.

Conclusion

Systemic PHA type 1 is a challenging disease to manage with severe salt wasting that starts in the neonatal period. In this disease, life-threatening arrhythmias can be seen due to recurrent salt wasting and severe hyperkalemia. PHA1B can be confused with congenital adrenal hyperplasia. If a patient with hyperkalemia has hyponatremia, elevated urinary sodium excretion and low TTKG, mineralocorticoid resistance/deficiency should be considered. Treatment compliance is difficult due to the need for high dose oral salt and antipotassium treatment. Long-term follow-up and treatment of these patients should be done carefully, as the patients are frequently incomparable with treatment and the frequency of rapid decomposition is high especially during periods of infection.
Table-1 is presented in a separate file.

References

Figure 1.
<table>
<thead>
<tr>
<th></th>
<th>Gender</th>
<th>Age of diagnosis</th>
<th>Name Na/ L</th>
<th>K mmol/ L</th>
<th>Aldosterone ng/dl</th>
<th>Renin ng/ml/h</th>
<th>Genetic</th>
<th>Treatment</th>
<th>Current age</th>
<th>Additional Findings</th>
<th>Clinical follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our case</td>
<td>M</td>
<td>1 month 25 days</td>
<td>123</td>
<td>7.1</td>
<td>640</td>
<td>16.3</td>
<td>c.978C>A (p.Tyr326Ter) (E6) Homozygous</td>
<td>NaCl, NaHCO₃, sodium polystyrene sulphate</td>
<td>7 months old</td>
<td>Myocarditis and hypertension</td>
<td>Once experienced salt wasting crisis during infection, now his development is appropriate for age</td>
</tr>
<tr>
<td>Chang et al.</td>
<td>-</td>
<td>19 days</td>
<td>133</td>
<td>8.2</td>
<td>-</td>
<td>-</td>
<td>c.109G>A (p.Gly37Ser) (E2) Homozygous</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kerem et al.</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Two frame shift variations 647insA (E3) / 915delC (E5) Compound heterozygous</td>
<td>-</td>
<td>18 years</td>
<td>High serum IgE concentration, normal spirometry and chest radiography</td>
<td>-</td>
</tr>
<tr>
<td>Thomas et al.</td>
<td>-</td>
<td>4 days</td>
<td>127</td>
<td>10.2</td>
<td>1.281</td>
<td>235.2</td>
<td>Large homozygous deletion in the promoter region of βENaC</td>
<td>NaCl, NaHCO₃, sodium polystyrene sulphate</td>
<td>7 years old</td>
<td>Recurrent lung infection</td>
<td>There is a decrease in the frequency of lung infections</td>
</tr>
<tr>
<td>Saxena et al.</td>
<td>M</td>
<td>7-8 days</td>
<td>< 120</td>
<td>8.5-10.5</td>
<td>>1440</td>
<td>-</td>
<td>1669+1G>A splice site mutation in intron 12, Homozygous</td>
<td>NaCl, kayexalate</td>
<td>-</td>
<td>-</td>
<td>Recurrent salt-wasting crisis in newborn and infancy, gastrostomy was required, his growth and development was normal but he died at</td>
</tr>
<tr>
<td>Last Name</td>
<td>First Name</td>
<td>Sex</td>
<td>Age (days)</td>
<td>Weight (kg)</td>
<td>Height (cm)</td>
<td>cDNA Mutation</td>
<td>Phenotype</td>
<td>Treatment</td>
<td>Follow-up</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Edelheit et al.(^{13}) and Hanukoglu et al.(^{20})</td>
<td>M</td>
<td>6</td>
<td>135</td>
<td>5.9</td>
<td>39.6-248.7</td>
<td>c.669+1G>A splice site mutation in intron 12, Homozygous</td>
<td>Persistent clear nasal discharge, frequent lower respiratory infections and failure to thrive</td>
<td>NaCl, Kayexalate</td>
<td>7 years old</td>
<td>Recurrent salt-wasting crisis, gastrostomy was performed at 14 months of age</td>
<td></td>
</tr>
<tr>
<td>Belot et al.(^{10})</td>
<td>F</td>
<td>6</td>
<td>126</td>
<td>6.8</td>
<td>1.627</td>
<td>c.637 C>T (p.Gln213Ter) (E4), Homozygous</td>
<td>3 years old</td>
<td>Bullous dermatitis</td>
<td>During follow-up, gastrostomy was opened, normal development at the age of 3 but still experiencing diarrhea and respiratory distress attacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogan et al.(^{19})</td>
<td>M</td>
<td>3</td>
<td>125</td>
<td>9</td>
<td>946</td>
<td>c.1266-1G>C splice site mutation in intron 8, Homozygous</td>
<td>3.5 years old</td>
<td>Vomiting, poor feeding</td>
<td>Short stature, decrease in dehydration attacks and in hospitalization with age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobel et al.(^{11})</td>
<td>F</td>
<td>2-3 weeks</td>
<td>135</td>
<td>5.1</td>
<td>2.800</td>
<td>c.1286delC (p.Leu430Tyrfs*3) (E9) / c.1466+1 G>A splice site mutation in intron 11</td>
<td>32 years</td>
<td>Myalgia, hidradenitis suppurativa, pulmoner hypertension</td>
<td>Continuous hospitalization from 2 weeks to 2 years and NaCl, NaHCO3 and potassium chelation support with gastrostomy tube up to 3.5 years old, recurrent episodes of chronic bronchitis during childhood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cayir et al.(^{6})</td>
<td>M</td>
<td>9</td>
<td>106</td>
<td>11.8</td>
<td>317.5</td>
<td>c.87C>A (p.Tyr29Ter) (E2) /</td>
<td>-</td>
<td>-</td>
<td>During the follow up had seven salt wasting crisis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>Age</td>
<td>Plasma Aldosteron</td>
<td>Mutation in Exon</td>
<td>Sodium, sodium bicarbonate, sodium resonium</td>
<td>Age</td>
<td>Clinical Features</td>
<td>Dialysis Need</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---</td>
<td>-----</td>
<td>------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gopal-Kothandapani et al.⁷</td>
<td>F</td>
<td>1 day</td>
<td></td>
<td>c.1346+1G>A splice site mutation in intron 9</td>
<td>Compound heterozygous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>polystyrene sulphate</td>
<td></td>
<td>and died in the last crisis at 6 months of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>8 days</td>
<td></td>
<td>c.1542+1G>A splice site mutation in intron 12</td>
<td></td>
<td>8 years old</td>
<td>Severe eczema</td>
<td>Peritoneal dialysis need at the first application, frequent lung infection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Plasma aldosteron concentration stated as 1 g/L (1-95) in the article.
- Nomenclature of the variations are written as in the original publications.