Sepsisin İmmünopatogenezi

Dr. Yıldız CAMCIOĞLU, Dr. Erman AYTAÇ
İstanbul Üniversitesi, Çerrahişa Tip Fakültesi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, İstanbul
İstanbul Üniversitesi, Çerrahişa Tip Fakültesi, Genel Çerrahi Anabilim Dalı, İstanbul

ÖZET

Sepsis, bakteri, virüs, mantar, protozoa veya riketsiya gibi enfeksiyoz etkenlerle karşı zarar veren sistemik yanıt ile karakterize birden fazla organ bozukluğu sonunda ölüme götürüen karmışlık olaylar ağrılı sonucudur. Sistemik inflamatuvar yanıt sendromu(SIRS), sepsis, ağır sepsis, septik şok ve multiorgan yetersizliği (MOF) bu karmışlık hastalığın evrelerini betimlemek üzere kullanılan tanımlardır. Bu makale, doğal ve edinsel immün sistem elemanlarının sepsis immünopatogenezinde etkinliklerine işık tutacaklardır.

Anahtar Sözcükler: Sepsis, doğal immün sistem, sitokinler

SUMMARY

Immunopathogenesis of sepsis. Sepsis is a result of complex network of events characterized by an overwhelming systemic response to infection with bacteria, viruses, fungi, protozoa or rickettsiae which can rapidly lead to multiorgan dysfunction and ultimately death. The systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, septic shock and multiorgan failure (MOF) are used to characterize the stages of this complex disorder. This review highlights the interplay of different elements of innate and adaptive immune system in the immunopathogenesis of the sepsis.

Key Words: Sepsis, innate immunity, cytokines

Sepsis, bakteri, virüs, mantar, protozoa veya riketsiya gibi enfeksiyoz etkenlerin immün sistemi uyarması ile başlayan birden fazla organ bozukluğu sonunda ölüme götürüen karmışlık olayları bir sonucudur. Hücresel ve hıııoral immün sistemün uyarması ile pro-ve anti-inflamatuvar sitokinler salınır. Salınan mediyatörler kompleman sistemi, inflamatuvar yanıt (lıkositlerin birikmesi) ve koagülasyon ve fibrinoliz yolaklarını yanı hem üç-major arayolu etkin kılarm hem de kendi aralarındaki ilişkimizin oluşmasını sağlar (1-5). Sistemik inflamatuvar yanıt sendromu(SIRS), sepsis, ağır sepsis, septik şok ve multiorgan yetersizliği (MOF) bu karmışlık dönemin evrelerini betimleyen tanımlardır. SIRS, nedeni ne olursa olsun doğal immün yanının sistemik yanıtının bir sonucu iken, sepsis, ağır sepsis ve septik şok enfeksiyonu ve multiorgan yetersizligine (MOF) eşlik eder (4).

Süt çocuklarına ve çocuklarda bakteriyemiyeye yol açan etmenler aşağıda sıralanmıştır (1,2):
- Agaamglobulini
- Edinsel immün yetersizlik sendromu (AIDS)
- Aspleni
- Kemoterapi
- Kompleman ve properdin eksikliği
- Doğumsal kalp hastalığı
- Yaygın yanık
- Yabancı cisim
- Solunum, gastrointestinal ve genito-üriner sistemde kullanılan yabancı materiyel içeren aletler
- Süt çocukunun inaçlı ishalı
- Intravasküler veya invazif monitör aleti
- Malignite
- Birden fazla travma
- Nötropeni
- Prematürelık
- Orak hücreli anemi
- Çerrahi girişim
- Transplantasyon
- Üriner sistem malformasyonu

Klinik Belirtiler:

Bakteriyesel sepsis hipermetabolik ve hipometabolik evre olmak üzere iki evrede seyredir. Başlangıçta ateş, titreme, taşınmada, deri lezyonları (petesi, eritem, purpura fulminans), konfüzyon, letarji veya koma gibi bilinc değişiklikleri görülür, daha sonra kalp atım hacmini, doku perfüzyonu, metabolik huz artar ve pro-inflamatuvar mediatörlere bağlı hiperglomerüse ve hiperinsülinim gelişir. Hipometabolik evre ise septik şok olarak bilinir ve belirgin immün baskılama sonucu birden fazla organ bozukluğu olur.

İmmünopatogenez

Hücresel ve hıııoral immün sistemünün mikroorganizmaların vücuda girmesi ile uyarılır ve pro-ve anti-inflamatuvar sitokinler salınır (6-8). Sitokinlerin yanı sıra, koagülasyon faktörleri, adezyon molekülleri, myokard başkayalar maddeler ve isi septik proteinleri de salınır (6-14) (Şekil 1).
Sekil 1. Sepsis Patogenezisi

Bakterilerin toksinlerine karşı gelişen hücresel immün yanıt, normal koşullarda konajo enfeksiyondan korunmasına karşın, hücresel yanıtın aşırı tepkisi konajın kendisine zarar verebilir. Normalde hücresel immün yanıtta oluşan sitokinlerin biyolojik etkilerini baskılamanın mediatörler sepsiis sırasında dengeyi sağlayamaz. Bundan dolayı sepsisin patogenezide "pro- ve anti-inflamatuar etkisel etkiler" olarak da tanımlanabilir (15-18). Sepsiste immün sistem baskılanmasını çeşitli düzenekler ile gelişir:

- İnflamatuar Th1 yanıt ve antiinflamatuar Th2 yanıt arasındaki dişi kalması
- Hücresel arası anerji ile
- CD 4 (+) T hücrelerinin, B hücrelerinin ve Dendritik hücrelerin apoptozu
- Makrofajlardaki MHC II ekspresyonunun azalması
- Apoptotik hücreler ile etkileşim

Nötrofiller


Endotelyal Hücreler

Septik şoka gören patolojik bulguların tümü endotelyal hücre hasarı sorumludur (25,26). Endotelyal hücrelerin yapısındaki bileşenlerini tanyararak LFS, tümör nekroz faktör-(TNF) ve interferon- (IFN)'ın deteniminde büyük oranda TLR-4, daha az TLR-2 ekspres ederler (27-30).

Kompleman Sistemi

Kompleman sisteminden aktivasyonu temel olarak birbirinden farklı 3 yolda olur: Klasik, Lektin ve alternatif yol. Her üç yolun amacı aynıdır: kompleksi (MAK) oluşturarak, yabancı hücre duvarında delik açmaktır. Hücre içindeki yüksek onkotik basınç suyu içeri çeker ve sonuç olarak hücre şişer ve patlar. Bu olayların gelişimi sırasında açığa çıkan C5a plazmada komplemanın kaynaklı kemotaktik aktivitenden %85'i olur. Çok miktardaki intravasküler C5a, C5a reseptörüne bağlanarak azalır. C5a'nın nötralizasyonu sepsis sendromunda koruyucudur (9,29-33).

Sitokinler

Arastırmacılar, sepsis sırasında salmon anan pro-inflamatuar mediatörlerin, tümör nekroz faktör-a (TNF-a), interleukin-1 (IL-1), IL-6, IL-12, INF-γ, IL-8 ve IL-18 olduğu konusunda hemfikirdirler. Konak savunma düzenecilerini uyaran tehlile sinyallerini taşırlar. TNF-a, IL-2, IL-6, IL-12, INF-γ, ve IL-8 hücre ve organ gelişim bozukluğuna olan sepsis ve multiorgan yetersizligine (MOF) yol açığı bildirilmektedir (34-46). Ancak sepsisin erken evrelerinde pro-inflammatavar sitokinlerin serum düzeyi düşüğün değer verilebilir, bu durumun ileri dengesinde seçkin hücrelerde ve dokulara ve IL-1 ve IL-10 gibi bazı sitokinlerin yapımı arttırmış yani Sepsisde bir nevi "sitokin fırtınası" oluşmaktadır (36-3900).

Doğal immün sistem mikroorganizmaları, patojene-eşik eden moleküler örgütü (PAMP) aracılığı ile tanı, etkin kilmlenmekte olan Toll (benzeri reseptörler (TLR), interleukin-1 (IL-1), tümör nekroz faktör (TNF-a), interleukin-6 (IL-6), ve interleukin-8 (IL-8) yapı tarafından basılır. Bazı sitokin tablolardan örneğin, lenfokoksemi örneğinde serumdaki olanların arttılmış, bulgular sepsisde Th2 baskın bir immün yanıt geliştiği göstermiştir (37-39). Interferon-γ (IFN-γ), lenfotoksin (LT) ve IL-2 gibi Th sitokinleri ve kemotaktikleri uyarılmaları ile nörofil ve makrofajların mikrobiyal gücü artar (1,2,5).

Şekil 2. Sepsisten Koagülasyon Mekanizması

Homestazın kaybolması ile sepsisli hastada, aşağıdaki verilen bulgular görülür:
- Intravasküler koagülopati (DIC)
- Mikrovasküler tromboz
- Akut birden fazla organ gelişim bozukluğu (MOD)

Aktive Protein C


Sepsisin İmmünopatogenezi, Sayfa 81-85

Organ gelişim bozukluğu ve ölümü götüren birincil etmenler, homeostazı dengede tutan pro-trombotik ve anti-trombotik düzenecelerdir (Şekil 2) (1,2,5,6).
doku faktörlerini (tissue factors) ayıran antitrombin III ve protein C, pro-koagülasyon kaskadına daire dengeyi sağlamak zorundadır (40,41).

Genetik Faktörler
Son yıllarda yapılan çalışmalar ile insanlarında genetik faktörlerin konajın enfeksiyon hastalıklarına karşı duyarlığı belirlemektedir. Sitokin genlerinde polimorfizm (TNF-a,TNF-α, IL-1-ra)çalışmaları, Fe reseptörler, tollbenzeri reseptörler, nmanno bağlayan proteininde mutasyonlara açık olan plakokok, meningokok enfeksiyonlarına ve septik şoka yol açtığı bulunmuştur (42-44).

Sinir Sistemi
Sinir Sistemi, inflamatuvar yanıtlara örnek olan diğer denetli. Doku hasarına bağlı olarak verilen inflamatuvar ürünler, traktus solitarius çekirdeğini afferen sinyaller ile etkine kalar; kolinerjik anti-inflamatuvar reflks (the inflammatory reflex) ile sitokin yapımı baskalar. Bu bilgiler hipotalamusu ulaştıranl ve dorsal vagal kompleks ACTH salınımını için uyarlar böylece hemol anti-inflamatuvar arayollar etkin kilnır. Sempatik sistem'in ağrı veya doğrudan uyarılması ile yerel inflamasyonu baskılayabiliradral ve noradrenalini düzeyini artırır (45).


KAYNAKLAR
20. Axelle T. andPribble J., IC14, a CD14 specific monoclonal antibody, is apotential treatment forpatients with severe sepsis. JEndotoxin Res. 2001:7:310-314


35. Weissensteiner T, Lanchbury JS TNFB polymorphisms characterize three lineages of TNF region microsatellite haplotypes. Immunogenetics 1999;47:6-16

36. Pfleger K. Biological functions of tumor necrosis factor cytokines and their receptors 2003; 14:185-191


44. Emonts M, Haznelset A R, de Groot J and Hermans PWM. Host genetic determinants of
