Case report

Clinical features in patients with Xq23 microdeletion: A case report and literature review (Xq23 microdeletions)

QIN Lu1, ZHANG Fei-Zhou1, LV Jian-Hai, TANG Lan-Fang
1Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine
2Department of Pediatrics, Shangyu People’s Hospital

What is already known on this topic?
Xq22.3-q23 microdeletion is a rare genomic disorder. Deletions in this region may present Alport syndrome with intellectual disability, midface hypoplasia and elliptocytosis (AMME, MIM 300194), growth retardation, language delay, and alterations of bones, heart and eyes. With the array CGH technology, more patients with Xq microdeletion have been reported. Until now, about 11 families and 21 patients with microdeletion at Xq22.3-q23 was reported. However, only 2 have been reported in the literature pertaining to the AMMECR1 (MIM 300990) and CHRDL1 (MIM 300350) genes, respectively. AMMECR1 maps within the AMME complex interval. Disorder of this gene can cause midface hypoplasia, elliptocytosis, language disorder including early speech or language delay, infantile hypotonia, hearing loss, nephrocalcinosis and submucous cleft palate. Besides, AMMECR1 is also associated with short stature, cardiac and skeletal abnormalities. Another gene CHRDL1 has been identified as the causative gene of X-linked megalocornea (MGC1; MIM 309300), which is associated with distinctive secondary changes in the posterior crocodile shagreen and corneal arcus juvenilis.

What this study adds?
we reported a boy with Xq23 microdeletion, which involved AMMECR1 and CHRDL1 genes who presented microsomia, midface hypoplasia, right kidney dysplasia and mildly motor retardation, which have never been reported before to be related with Xq23 deletion. To our knowledge, this is the first case with Xq23 microdeletion. A total of 9 cases with microdeletion at Xq22.3-q23 covered AMMECR1 gene and 2 cases with CHRDL1 mutation were reviewed. These data indicated that Xq23 microdeletion...
with microsomia, midface hypoplasia, kidney dysplasia, mildly motor retardation was rare. The previous literature showed two novel point mutation in AMMECR1 and CHRDL1 with some phenotype different from the patient. Xq23 microdeletion should be considered for patients with microsomia, midface hypoplasia, kidney dysplasia and growth retardation.

Keywords: Xq23 microdeletion; Midface hypoplasia; Kidney dysplasia; Growth retardation.

Corresponding author: TANG Lan-Fang, No. 3333 Binsheng Road, Hangzhou 310051, China
+86-13868138022
6195007@zju.edu.cn ORCID iD: 0000-0002-7994-7066
27.05.2020
07.12.2020

Introduction

Xq22.3-q23 microdeletion is a rare genomic disorder, which encompass the entire COL4A5 gene and its adjacent genes extending towards the telomere, including GUCY2F, NXT2, KCNE1L, ACSL4, TMEM164, MIR3978, AMMECR1, SNORD96B, RGAG1, TDGF3, CHRDL1, PAK3 and DCX. (1) Deletions in this region may present Alport syndrome with intellectual disability, midface hypoplasia and elliptocytosis (AMME, MIM 300194), growth retardation, language delay, and alterations of bones, heart and eyes. The difference of phenotype is probably associated with the location and size of the deletion, which may include different genes. With the array CGH technology, more patients with Xq microdeletion have been reported. Until now, about 11 families and 21 patients with microdeletion at Xq22.3-q23 was reported. However, only 2 have been reported in the literature pertaining to the AMMECR1 (MIM 300990) and Chordin-like 1 (CHRDL1 MIM 300350) genes, respectively. AMMECR1 maps within the AMME complex interval. (2) Disorder of this gene can cause midface hypoplasia, elliptocytosis, language disorder including early speech or language delay, infantile hypotonia, hearing loss, nephrocalcinosis and submucous cleft palate. Besides, AMMECR1 is also associated with short stature, cardiac and skeletal abnormalities. (2) Another gene CHRD1 has been identified as the causative gene of X-linked megalocornea (MGC1; MIM 309300), which is associated with distinctive secondary changes in the posterior corneal shagreen and corneal arcus juvenilis. (3) Herein, we reported a patient with Xq23 microdeletion, which involved AMMECR1 and CHRDL1 genes who presented microsomia, midface hypoplasia, kidney dysplasia, growth retardation and some alterations of bones and heart. Meanwhile, our reviewed patients with Xq23 microdeletion or a deletion overlapping partially to highlight the rare condition and analyze the genotype-phenotype correlations.

Case presentation

A 5-year-old boy presented our clinics for developmental delay with mildly motor retardation for 5 years. He was G2P2 of nonconsanguineous health parents and weighed 3.3 kg at birth without asphyxia. Antenatal screening implied right renal dysplasia and regular postpartum reexamination confirmed the diagnosis. Growth retardation with short stature were noted after birth. He can sit at the age of 9 months and walk at the age of 19 months. He can speak “mum” at about 11 months but still stuttered. His right kidney was surgically removed at the aged of 3 years 8 months. During the operation, thin right ureter and multiple cysts in the left kidney were noted. ECG and cardiac ultrasound examination showed type B pre-excitation syndrome and aceleistocardia (ø 0.27 cm). No obvious abnormal signs of cardiopulmonary and diaphragm was found by chest X-ray. Abdominal ultrasound scan did not find abnormality of the liver, gallbladder or spleen. His father and mother were 163 cm and 153 cm, respectively while his 8 years old sister was also growing slowly (about 123 cm). There was no family history of hereditary disease in the patient’s family.

On physical examination, his height was 99.3 cm (<-2SD). Besides, he had characteristic features, comprising flat facial profile, mildly epicantic folds, downsloining palpebral fissures, flat nasal bridge, bulbous nose, smaller left cheek, and slightly asymmetrical of nasolabial sulcus (Figure 1A). Flat lateral top of the skull, cytophthosphcinous, low-set ears, low hairline and short neck were also noted (Figure 1B). In addition, malpositioned teeth and bilateral clinodactyly of the fifth finger were also noted (Figure 1C). However, his intelligence was normal. Laboratory examination of thyroid, liver and kidney function, GC/MS for blood were regular or negative. X-ray scan showed 7 ossification centers in the right-hand carpal bone. Chromosomal microarray analysis (CMA) found a 671 Kb microdeletion located at Xq23, which involved AMMECR1 and CHRDL1 genes (Figure 2). It was regret that the parents refused to perform further genetic testing.
We reviewed the literature in English (PubMed and OMIM database) and Chinese. A total of 9 cases with microdeletion at Xq22.3-q23 covered AMMECR1 gene and 3 case with CHRD1 gene mutation were founded. The clinical features were showed in Table1.

Discussion

We found a 671 Kb microdeletion located at Xq23, which involved AMMECR1 and CHRD1 genes. Although Xq22.3-q23 microdeletion has been reported, to our knowledge, this is the first case with Xq23 microdeletion. Literature describing AMMECR1 disorder is also rare, its description and name (Alport syndrome, mental retardation, midface hypoplasia and elliptocytosis chromosomal region gene 1) is resulted from its cytogenic location within Xq22.3-q23 and its previous association with a very peculiar contiguous gene deletion syndrome originally named AMME. A deletion including COL4A5 (Xq22.3) extending proximally to include AMMECR1 which was first named AMME.(4) However, until now, the biological function of AMMECR1 is unclear. It was reported to code a protein that has a putative nuclear localization signal and may, therefore, encode a factor that regulates transcription.(5) Besides, a 250 Kb deletion on Xq23 that involved the CHRD1 gene and segregated with the affected phenotype in the affected individual’s family, they described an inherited congenital disorder which was named MGC1. This gene encodes ventroptin, a bone morphogenic protein antagonist with a proposed role in specification of topographic retinotectal projections and CHRD1 is differentially expressed in the human fetal brain, and there is high expression in cerebellum and neocortex.(6)

Similar with other 2 cases reported previously with the same mutation at Xq22.3-q23 of the AMMECR1 gene by Andreoletti et al,(1) current case presented microsomia, right kidney dysplasia, mildly motor retardation, spoke early, stuttered, midface hypoplasia including flat facial profile, mildly epicantic folds, downslanting palpebral fissures, flat nasal bridge, bulbous nose, short neck and so on. These suggested that in patients with growth retardation, midface hypoplasia, kidney dysplasia, motor retardation, language disorder as well as alteration of bones and heart, Xq23 microdeletion should be considered.

Compared the phenotype of the current patient with previous cases, we noted that current case did not show mental retardation, hearing loss and showed a language disorder, which was noted in Jonsson et al reported patients(4). However, the current case also presented bilateral eliodactyly of the fifth finger, cardiac and skeletal abnormalities and did not present elliptocytosis as well as hearing loss while the other 2 cases by Andreoletti et al. He’s report showed varying degrees of hearing impairment and did not show the alteration of bones. Besides the older brother of the 2 cases showed scattered elliptocytes and anisocytosis. It was remarkable that the current case presented short stature, skeletal and cardiac abnormalities which was similar with the other 5 cases reported by Moysés-Oliveira et al,(2) but the previous reported patients also had hearing loss while the current case did not present. These suggested the microdeletion of Xq23 including AMMECR1 is not directly related to mental retardation and hearing loss, but it has a direct impact on growth and development, facial malformation, bone and heart alterations. Besides, the phenotype of kidney abnormalities may be related to the gene AMMECR1, but the manifestations of renal are different. Moreover, current case did not present megalocornea or other eye lesions that this phenotype may be related to the mutation of CHRD1 gene.(7) It was notable that the Davidson et al(8) report about the patient presented global developmental delay, midface hypoplasia, walked at the age of 20 months and required speech therapy of the mutation of CHRD1 which is similar with the current patient, but the current patient did not show intellectual disability while the patient had moderate intellectual disability at the age of 10 years, of course, it is not certain whether the current patient will develop mental retardation or not in the future. These explained the microdeletion of Xq23 involved CHRD1 does not necessarily lead to X-linked megalocornea and intellectual disability. However, the mutation of gene CHRD1 may related to the above phenotypes. Besides, compare Webb and Davidson et al’s reports with the current patient, we can suggest that megalocornea-mental retardation (MMR syndrome), in some cases, may be di- or multigenic, because the current patient did not show any facial abnormality and mental retardation. These suggested that the clinical features of Xq22 to Xq23 microdeletion were varied, although development disability, facial malformation, renal abnormality, cardiac and bone alteration are prevalent among individuals with deletions across the Xq22.3-q23 region.

In summary, Xq23 microdeletion is a rare condition. In patients with growth retardation, midface hypoplasia, kidney dysplasia, motor retardation, language disorder as well as alteration of bones and cardiac, Xq23 microdeletion should be considered. A detailed family history, careful physical exam to identify distinctive clinical features and improved genetic diagnosis may directly benefit the patient by allowing management and counseling specific for the disorder.(9)

References

Figure 1. Photos of current case. (A) Flat facial profile, mildly epicanthic folds, downslanting palpebral fissures, flat nasal bridge, bulbous nose, short neck and the left cheek is smaller than the right cheek, slightly asymmetrical of nasolabial sulcus. (B) Flat lateral top of the skull, cyrtopisthocranius, low-set ears and low hairline. (C) Clinodactyly of the fifth finger.

Figure 2. Chromosomal microarray analysis found one 671 Kb microdeletion located at Xq23 that covered the AMMECR1 and CHRDL1 genes.
Table 1. Clinical findings in patients with Xq22.3-23 deletion including AMMECR1 or partially overlapping this region.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>male</td>
<td>male</td>
<td>male</td>
<td>male</td>
<td>female</td>
<td>male</td>
<td>male</td>
<td>male</td>
<td>male</td>
<td>male</td>
</tr>
<tr>
<td>Gene</td>
<td>COL4A6 to TDGF3</td>
<td>COL4A6 to TDGF3</td>
<td>AMMECR1</td>
<td>AMMECR1</td>
<td>AMMECR1</td>
<td>AMMECR1</td>
<td>AMMECR1</td>
<td>AMMECR1</td>
<td>AMMECR1</td>
<td>AMMECR1 to CHRD1</td>
</tr>
<tr>
<td>Short stature</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>+</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NI</td>
<td>+</td>
<td>+</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>Hearing loss</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NI</td>
<td>NI</td>
<td>_</td>
</tr>
<tr>
<td>Mental retardation</td>
<td>_</td>
<td>_</td>
<td>NI</td>
<td>NI</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Motor delay</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>+</td>
</tr>
<tr>
<td>Midface hypoplasia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>+</td>
</tr>
<tr>
<td>Ocular abnormality</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>_</td>
</tr>
<tr>
<td>Language disorder</td>
<td>delay</td>
<td>delay</td>
<td>Early & delay,</td>
<td>+</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>NI</td>
<td>delay</td>
<td>stuttered</td>
</tr>
<tr>
<td>Kidney abnormality</td>
<td>haematuria</td>
<td>haematuria</td>
<td>nephrocalcinosis</td>
<td>nephrocalcinosis</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>dysplasia</td>
</tr>
<tr>
<td>Cardiac & skeletal abnormality</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
</tr>
<tr>
<td>Elliptocytosis</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

+, present; −, absent; NI, not investigated