Vitamin D Deficiency Prevalence in Late Neonatal Hypocalcemia: A Multicenter Study

Gülcan Seymen-Karabulut1, Ayla Güneşmez2 Prof, Ayşe Sevim Gökalp3 Prof, Şükru Hatun1 Prof, (Neonatal Study Group) Fatma Kaya Narter4 Assoc Prof, Mehmet Mutlu5, Şebnem Kader6 MD, Demet Terek7, Deniz Hanta8, Emel Okulu9, Leyla Karadeniz10 Assoc Prof, H.Gözde Kanoz Kutman11 Assoc Prof, Ayşegül Zenciroğlu12 Prof, Özşemir M.A. Özdemir13 Prof, Dilek Sarıcı14 Assoc Prof, Mutluhan Çelik15, Nihat Demir16 Assoc Prof, Özden Turan17 Assoc Prof, Kyimeç Çelik18, Fatih Kılıçbay2, Sinan Uslu19 Assoc Prof, Sara Erol20, Sabahattin Ertuğrul21 Assoc Prof, İlay Er22, Hasan Tolga Çelik23, Memih Çetinkaya24 Prof, Filiz Aktürk-Acar25, Yakup Aslan26 MD, Gaffari Tun27, Ömer Güran28, Ayşegül Ansoy29 Prof

1University of Health Sciences Ümraniye Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Istanbul, Turkey
2Kıocaeli University School of Medicine, Department of Pediatrics, Division of Neonatology, Kocaeli, Turkey
3 Koç University School of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Istanbul, Turkey
4Dr. Lütfü Kirdar Training and Education Hospital Department of Pediatrics, Division of Neonatology, Istanbul, Turkey
5Karadeniz Technical University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Trabzon, Turkey
6Trabzon Kanuni Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Trabzon, Turkey
7Ege University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Izmir, Turkey
8Adana Women and Children Hospital, Department of Pediatrics, Division of Neonatology, Adana, Turkey
9Ankara University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
10Ümraniye Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Istanbul, Turkey
11Zekai Tahir Burak Maternity Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
12Sami Ulus Maternity Women and Children Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
13Pamukkale University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Denizli, Turkey
14Keciören Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
15Diyarbakır Children Hospital, Department of Pediatrics, Division of Neonatology, Diyarbakır, Turkey
16Van Yüzüncü Yıl University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Van, Turkey
17Başkent University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
18Dr. Behçet Uz Children Training and Research Hospital, Department of Pediatrics, Division of Neonatology, İzmir, Turkey
19Şişli Hamidiye Etfal Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Istanbul, Turkey
20Elik Zübeyde Hanım Maternity Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
21Dicle University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Diyarbakır, Turkey
22Derince Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Kocaeli, Turkey
23Hacettepe University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
24Canuni Training and Research Hospital, Department of Pediatrics, Division of Neonatology, Istanbul, Turkey
25Kocaeli University School of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, İstanbul, Turkey
26Diyarbakir Children Hospital, Department of Pediatrics, Division of Neonatology, Diyarbakir, Turkey
27Trabzon University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Trabzon, Turkey
28Ege University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Izmir, Turkey
29Hacettepe University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Ankara, Turkey
30University of Health Sciences Ümraniye Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Istanbul, Turkey
31University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
32Kocaeli School of Medicine, Department of Pediatrics, Division of Neonatology, Kocaeli, Turkey
33Süleyman Demirel University, Medical Faculty, Department of Pediatrics, Division of Neonatology, Kocaeli, Turkey
34University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
35University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
36University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
37University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
38University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
39University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
40University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
41University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
42University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
43University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
44University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
45University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
46University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
47University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
48University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
49University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
50University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
51University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
52University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
53University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
54University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
55University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
56University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
57University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
58University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
59University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
60University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey
61University of Health Sciences Kocaeli Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Kocaeli, Turkey

What is already known on this topic?
Late neonatal hypocalcemia occurs after the first 72 hours and the most common causes include excessive phosphate intake, hypomagnesemia, hypoparathyroidism, and vitamin D deficiency.

What is this study adds?
Maternal vitamin D deficiency was found to be the most common cause of late neonatal hypocalcemia in our study. Due to the immaturity of regulating factors of parathormone and calcium, serum iPTH levels may not reach expected levels and serum phosphorus levels may remain high in vitamin D deficient neonates, posing a diagnostic dilemma by mimicking primary hypoparathyroidism.

Abstract
Objective: Late neonatal hypocalcemia (LNH) is a common metabolic problem associated with hypoparathyroidism, high phosphate intake and vitamin D deficiency (VDD), often presenting with seizures. In this cross-sectional study, we aimed to evaluate the role of VDD in LNH in Turkey and to describe the characteristics of affected newborns. Methods: Conducted in a cross-sectional design with the participation of 61 neonatal centers from December 2015 to December 2016, the study included term neonates with LNH (n=96) and their mothers (n=93). Data were registered to the FAVOR Web Registry System. Serum samples of the newborns and mothers were analyzed for calcium, phosphate, magnesium, albumin, alkaline phosphatase, intact parathormone (iPTH) and 25 hydroxyvitamin D 25(OH)D levels. Results: The median onset time of hypocalcemia was 5.0 (range, 4.0-8.0) days of age, with a male preponderance (60.4%). The median serum 25(OH)D levels of the neonates and their mothers were 6.3 (range, 4.1-9.05) ng/ml and 5.2 (range, 4.7-8.8) ng/ml, respectively. The prevalence of VDD (<12 ng/ml) was high in both the neonates (86.5%) and mothers (93%). Serum 25(OH)D levels of the infants and mothers showed a strong correlation (p<0.001). While the majority (93.7%) of the neonates had normal/high phosphorus levels, iPTH levels were low or inappropriately normal in 54.2% of the patients. Conclusion: Vitamin D
Neonatal vitamin D levels depend on maternal vitamin D status, breast-feeding, and sunlight exposure. The risk factors for hypocalcemia, parathyroid hormone (PTH) resistance, hypomagnesemia, and perinatal vitamin D deficiency include habitation at a high altitude, darker skin pigmentation, and excessive skin coverage with clothing. Most studies conducted in developing countries including Turkey have shown a high prevalence of vitamin D deficiency.

Keywords: vitamin D deficiency, hypocalcemia, infant, newborn.

Gülcan Seymen Karabulut
Postal Adress: Ümraniye Eğitim ve Araştırma Hastanesi Pediatrik Endokrinoloji Bölümü
Elmalıkent mah. Adem Yavuz Caddesi No:1 İstanbul-Türkiye

Introduction
Neonatal hypocalcemia is defined as a total serum calcium level of less than 7.5 mg/dl and ionized calcium (Ca\(^{2+}\)) level of less than 4.4 mg/dl in term newborns. Neonatal hypocalcemia may manifest as signs of neuromuscular hyperexcitability (irritability, jitteriness, tetany, laryngospasm, and seizures), apnea, cyanosis, feeding problems, and/or cardiac rhythm disturbances. The causes of neonatal hypocalcemia are classified by the time of onset. Early neonatal hypocalcemia occurs within the first three days after birth, with an exaggeration of normal decline in serum calcium concentration in the last two postnatal days. Late neonatal hypocalcemia occurs after the third day of birth, with the main causes being high phosphate intake, hypoparathyroidism, parathyroid hormone (PTH) resistance, hypomagnesemia, and perinatal vitamin D deficiency.

Neonatal vitamin D levels depend on maternal vitamin D status, breast-feeding, and sunlight exposure. The risk factors for maternal vitamin D deficiency include habitation at a high altitude, darker skin pigmentation, and excessive skin coverage with clothing. Most studies conducted in developing countries including Turkey have shown a high prevalence of hypovitaminosis D in newborns with a direct relationship with maternal vitamin D levels.

Material and Methods
This cross-sectional, nationwide study was carried out between December 2015 and 2016 with participation of 61 centers, and involved term neonates with late neonatal hypocalcemia and their mothers. The study was endorsed by the Turkish Neonatology Society. A case recording form (CRF), designed by two pediatric endocrinologists and a neonatologist (G.S.K, S.H, A.G), was used to collect demographic data; maternal history including maternal clothing, lifestyle, and use of vitamin D supplements during pregnancy; anthropometric and clinical findings of the neonates; and laboratory findings of the newborns and their mothers. The CRF was uploaded to the FAVOR Web Registry System website. The study data were entered into the system over a 12-month period (December 11, 2015–2016) by the participating researchers. Data entered into the registry were also checked for consistency by a research assistant (G.S.K). A total of 98 newborns with late neonatal hypocalcemia and their mothers were registered in the database.

The babies enrolled in our study were those who presented with hypocalcemia or who were hospitalized for other reasons and developed hypocalcemia during their follow-up. Hypocalcemia in asymptomatic babies came into attention by routine biochemical testing during internalization. Inclusion criteria were term newborns born at 37-42 weeks of gestation and the presence of late neonatal hypocalcemia (total serum calcium level of less than 7.5 mg/dl after the first 72 hours of birth). Registered data were overviewed for the following exclusion criteria: a birthweight of less than 2000 g and the presence of maternal diabetes, neonatal asphyxia, sepsis, malabsorption, renal insufficiency, liver disease, or use of anticonvulsants. The neonates fed with breast milk and/or formula were enrolled in the study.

Maternal and newborn venous blood samples were drawn at presentation to measure serum levels of total calcium (Ca), phosphate (PO4), magnesium (Mg), albumin, alkaline phosphatase (ALP), intact parathyormone (iPTH), and 25-hydroxyvitaminD (25(OH)D). Serum Ca, P, ALP, and iPTH levels were measured on the same day; for 25(OH)D, the blood samples were stored at -80°C until the time of assay in a single laboratory via the enzyme immunoassay method (IDS Immunodiagnostic Systems) (after centrifugation). According to the Global Consensus Recommendations, maternal and neonatal 25(OH)D levels of less than 12 ng/ml (30 nmol/l) were considered to be indicative of vitamin D deficiency. The inter- and intra-assay coefficients of variation were 6.7% and 8.7%, respectively. The reference range for total calcium was 8.7-10.4 mg/dl in mothers (adult women). The normal range of inorganic phosphate was 5.2 to 8.4 mg/dl for infants 0-5 months of age and 2.5 to 4.5 mg/dl for adult
women. The upper normal limits for ALP were 420 IU/l and 130 IU/l for infants and non-pregnant women, respectively.18 The normal range for iPTH was defined as 5-65 pg/ml.

Posterior fontanelle evaluation: The anteroposterior diameter (AB) was determined as the length, transverse diameter (CD) as the width. The average of the longitudinal and transverse dimensions was recorded as the mean fontanelle size (AB + CD)/2. Neonates with mean fontanelle size above 97th percentile were determined as having large fontanelle.19

Regular vitamin D intake during pregnancy was accepted as 1200 IU/day vitamin D starting from 12th week of pregnancy, irrespective of vitamin D status as stated in Turkish Ministry of Health Support Program.20

The consistency and appropriateness of the diagnoses and enrolment were reviewed by two of the authors (G.SK, A.G). After exclusion of 2 neonates and 5 mothers due to the lack of centrifuged serum samples for the 25(OH)D measurement, the final analyses included 96 newborns with newly-diagnosed late hypocalcemia and their 93 mothers. Written informed consent was obtained from parents of the newborns, and the study protocol was approved by the Kocaeli University Ethics Committee (Report number: KOU KAEK 2015/322).

Statistical analysis

Data were processed using SPSS software v.20 (IBM SPSS Statistics). Numerical variables were expressed as medians (Interquartile range [IQR]) and frequencies (percentages). The association between the maternal and neonatal 25(OH)D levels was evaluated by the Spearman’s correlation coefficient. A p value of less than 0.05 was considered to be significant.

Results

Among 96 neonates (38 girls, 58 boys) with newly diagnosed late hypocalcemia, the median age of onset was 12 (IQR 9-20) days (Table I). There was a seasonal pattern of presentation, with increased incidences in winter and spring months (65.6%). The majority of mothers (n=74, 77.1%) used covered clothing and spent most of their time indoors. Only 20.4\% of the mothers received regular vitamin D supplements during pregnancy.

| Table | shows the laboratory findings of neonates with late neonatal hypocalcemia. The median IQR serum calcium level was 6.9 (6.4-7.2) mg/dl, serum phosphorus 7.2 (6.1-8.5) mg/dl, serum ALP 197 (142.5-279.2) IU/l, and serum iPTH 69.1 (37.4-106) pg/ml. The median (IQR) serum vitamin D level was 6.3 (4.1-9.05) ng/ml, with 83 (86.2\%) neonates having vitamin D deficiency. Serum 25(OH)D level <12 ng/ml. Serum phosphorus levels were normal/high in all but six neonates, and iPTH levels were high in 44 neonates (45.8\%). The maternal median (IQR) serum vitamin D level was 5.2 (4.7-8.8) ng/ml, and 93\% of the mothers were vitamin D deficient (Table).

All but three mothers with vitamin D deficiency had neonates who also had vitamin D deficiency. A strong positive correlation was found between maternal and neonate serum 25(OH)D levels (r=0.513, p<0.001) (Fig. 1).

Discussion

This is the first cross-sectional multi-center study of term neonates with late hypocalcemia on the relationship between maternal vitamin D status and late neonatal hypocalcemia. Maternal and neonatal vitamin D deficiency was found to be related with neonatal late hypocalcemia. Although infants can be protected from severe hypocalcemia thanks to a nationwide program of free supplementation of 400 U/day vitamin D for infants, the problem of late neonatal hypocalcemia will not be overcome unless pregnant women are covered in the context of vitamin D supplementation.21

The prevalence of inadequate vitamin D status is high among pregnant and lactating women around the world.22,24 Women who wear covered clothing, live at high altitudes, and do not have an adequate exposure to sunlight are especially at risk for vitamin D deficiency.14 In a study from Turkey, in lactating women and their babies a serum 25(OH)D level below 11 ng/ml was accepted as severe, 11-25 ng/ml as moderate vitamin D deficiency, and a value over 25 ng/ml as normal. Severe vitamin D deficiency was found in 27\% of the mothers, and moderate deficiency in 54.3\%. Severe vitamin D deficiency was detected in 64.3\% of the neonates, and moderate deficiency in 32.9\%.24

An Indian study by Mehrotra et al.25 in 2008 found that 90\% of neonates with hypocalcemic convulsions and 85\% of their mothers had vitamin D deficiency. Furthermore, a significant correlation was found between the serum 25(OH)D levels of the mothers and infants.

Hatun et al.15 examined the medical records of infants with vitamin D deficiency and/or nutritional rickets in Turkey and found that 79\% of the infants whose mothers were also vitamin D deficient had presented with hypocalcemic seizures. In the present study, vitamin D deficiency was diagnosed in 86.5\% of the neonates with late hypocalcemia and in 93\% of their mothers, and consistent with many previous reports, with a significant correlation between maternal and newborn 25(OH)D levels.3,10

As a known risk factor for vitamin D deficiency, covered clothing was seen in 77.1\% of the mothers. Another study conducted in Turkey reported similar results.15 In a study carried out in Iran, where the vast majority of the population are Muslim and where women are required to veil themselves, among 100 neonates diagnosed with hypocalcemia, the prevalence of maternal vitamin D deficiency was found as 74\%.9

According to the Global Consensus Recommendations, the basic approach to prevent late neonatal hypocalcemia is to supplement women with vitamin D of at least 600 U/day particularly over the last 3 months of pregnancy. However, another important consideration is that, as previously reported by a national study, 25(OH)D levels can be normalized only by the administration of 2000 U of vitamin D per day during pregnancy.25

In the current study, the majority of late hypocalcemic babies were mainly born in the winter and spring months, which is consistent with a previous study from Korea that included 17 term newborns with late neonatal hypocalcemia.26 This may be explained by limited sunlight exposure for mothers whose late pregnancy periods take place during the winter and spring months, leading to low maternal and neonatal vitamin D levels.

We observed a male preponderance, which was previously reported by an American study of 78 full-term neonates with transient hypocalcemia as well as by a study from the United Kingdom involving hypocalcemic neonates and children due to vitamin D deficiency.27,28
In our study, despite the high prevalence of vitamin D deficiency (86.5%), large anterior fontanelle was observed in a small percentage of neonates (6.3%). Since reduced serum phosphate concentration is mainly responsible for the skeletal findings of rickets, we can speculate that, regardless of the amount, continuous transplacental transfer of calcium and phosphorus to the fetus might have limited the clinical and biochemical manifestations of vitamin D deficiency in these neonates. Elevated PTH level is an important cause of decreased phosphate reabsorption, however in neonates and young infants PTH resistance, and/or inadequate PTH response may result in hypocalcemia before skeletal findings occur.

Vitamin D deficiency is associated with biochemical disruption to calcium homeostasis, resulting in a typical constellation of hypocalcaemia, hypophosphataemia, and elevated levels of alkaline phosphatase and PTH. Other studies have documented that vitamin D deficiency triggers PTH release in adults, children, and older infants; however, in newborns and young infants, this loop appears not to occur, and hypovitaminosis D coexisted with blunt PTH response and/or PTH resistance.33 In our study, baseline iPTH concentrations were increased in only 45.8% of neonates, and serum phosphorus levels were normal/high in all but five patients. Do et al.26 reported that, in 17 neonates with late-onset hypocalcemia secondary to vitamin D deficiency, iPTH levels were not remarkably elevated except in one case. Similar results in neonates were described by Maghbooli et al.34, who reported elevated serum iPTH levels only in 10% of vitamin D deficient neonates at birth. Late maturation of the parathyroid axis is thought to be a main cause of transient neonatal hypocalcaemia, as suggested by the low or inappropriately normal PTH levels and high phosphorus levels in these infants. We also observed biochemically normal/high phosphorus levels in hypocalcemic neonates, although hyperparathyroidism is present, reflecting a possible PTH resistance. In the literature, some studies report PTH resistance on bone secondary to vitamin D deficiency.35 One of the basic points that we previously stated and would like to emphasize is that a secondary increase in PTH levels as a response to hypocalcaemia (progress from stage 1 to stage 2) may not take place in vitamin D deficiency primarily infancy. Thus, a decreased calcium level, normal or elevated serum phosphorus level in the presence of low and/or inappropriately normal normal iPTH level may be detected, mimicking hypoparathyroidism. This puzzles clinicians and pseudohypoparathyroidism is considered for cases where PTH level is high. We would also like to stress that, in some vitamin D deficient cases, serum phosphorus levels may be normal or high despite an increase in vitamin D level, due to secondary PTH resistance and vitamin D deficiency may be kept in mind in the differential diagnosis of pseudohypoparathyroidism. Elevated serum PTH concentration in the face of hypocalcemia and normal/high serum phosphate indicates an element of end organ resistance to PTH, mimicking pseudopahypoparathyroidism. It was postulated in experiments rats that vitamin D depletions made them unresponsive to PTH. The vitamin D-depleted hypocalcemic rats failed to show elevation of serum calcium or a phosphaturic effect to injected PTH extracts, which could be corrected by addition of a small dose of vitamin D. The end organ resistance observed in vitaminD deficiency could result from down regulation of the PTHrP receptor.36 Rao et al.37 observed an impaired phosphaturic response but normal urinary cAMP excretion to PTH in vitamin D deficient infants, similar to the picture in pseudohypoparathyroidism. The response to PTH was restored to normal following vitamin D and calcium supplementation suggesting that the presence of vitamin D deficiency and/or hypocalcemia, the renal tubules are resistant to the action of PTH. The aim of our study was to determine the prevalence of vitamin D deficiency in babies with late neonatal hypocalcemia, to draw attention to the importance of checking perinatal vitamin D levels when investigating the cause of late neonatal hypocalcaemia and to point out that vitamin D deficiency may have biochemical findings leading to confusion with other etiological factors. Although the majority of the babies and their mothers included in our study was vitamin D deficient we tried to be cautious not to indicate vitamin D deficiency as the sole reason for hypocalcemia in these babies. We tried to emphasize that the prevalence of vitamin D deficiency is high in babies with hypocalcaemia and it should be kept in mind as one of the leading possible causes. As it is known, cases of pseudohypoparathyroidism due to G protein receptor defects present with symptoms after the newborn and infancy period.38 The cases that may be confused with vitamin D deficiency in the neonatal period are mainly of transient pseudohypoparathyroidism due to PTH receptor immaturity. In these cases, serum 25-OHD levels are not expected to be low. In addition, delay in both PTH release and the maturation in PTH receptors may be associated with neonatal vitamin D deficiency, which leads to biochemical findings such as hyperphosphatemia and symptomatic hypocalcemia.39

Limitations of the study
A potential limitation of the study is the small number of the patients despite the participation of many centres. It is, however, difficult to recruit a large number of neonates with hypocalcaemia in intensive care units due to the exclusion criteria including the presence of maternal diabetes, neonatal asphyxia, malabsorption, renal insufficiency, liver disease, or use of anticonvulsants and the concerns of parents about giving approval for taking blood samples from their babies. In addition, ELISA which is used in our study to measure vitamin D levels is not the gold standard test because of interference with vitamin D metabolites. In conclusion, our study provides further support as to the need for maintaining adequate vitamin D status in pregnancy. Late neonatal hypocalcaemia has a close association with perinatal vitamin D deficiency, thus the first step of a diagnostic work-up for the neonatal hypocalcemia would be to measure serum 25(OH)D levels.

Financial assistance: This study was supported by Kocaeli University Scientific Research Fund.

REFERENCES

20. Turkish ministry of health. The guide of vitamin D supplementation of pregnant women; 2011.

Table 1. Demographic and Clinical Characteristics of 96 Neonates with Late Neonatal Hypocalcemia.

<table>
<thead>
<tr>
<th>Characteristics (n=96)</th>
<th>Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (onset of hypocalcemia, day)</td>
<td>5 (4-8)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>58 (60.4)</td>
</tr>
<tr>
<td>Female</td>
<td>38 (39.6)</td>
</tr>
<tr>
<td>Season of birth time</td>
<td></td>
</tr>
<tr>
<td>Winter (December-February)</td>
<td>27 (28.1)</td>
</tr>
<tr>
<td>Spring (March-May)</td>
<td>36 (37.5)</td>
</tr>
<tr>
<td>Summer (June-August)</td>
<td>14 (14.6)</td>
</tr>
<tr>
<td>Autumn (September-November)</td>
<td>19 (19.8)</td>
</tr>
<tr>
<td>Living area</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>49 (51)</td>
</tr>
<tr>
<td>Rural</td>
<td>47 (49)</td>
</tr>
<tr>
<td>Maternal clothing</td>
<td></td>
</tr>
<tr>
<td>Covered</td>
<td>74 (77.1)</td>
</tr>
<tr>
<td>Uncovered</td>
<td>22 (22.9)</td>
</tr>
<tr>
<td>Maternal vitamin D supplementation during pregnancy</td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>19 (20.4)</td>
</tr>
<tr>
<td>Irregular</td>
<td>4 (4.3)</td>
</tr>
<tr>
<td>None</td>
<td>70 (75.3)</td>
</tr>
<tr>
<td>Symptom (+)</td>
<td></td>
</tr>
<tr>
<td>Convulsion</td>
<td>33 (34.4)</td>
</tr>
<tr>
<td>Poor sucking reflex</td>
<td>18 (18.8)</td>
</tr>
<tr>
<td>Exaggerated startle</td>
<td>17 (17.7)</td>
</tr>
<tr>
<td>Lethargy</td>
<td>11 (11.5)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>7 (7.3)</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>Apnea</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Craniotabes</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>Large anterior fontanelle</td>
<td>6 (6.3)</td>
</tr>
<tr>
<td>Gestational age (week)</td>
<td>38 (37-39)</td>
</tr>
<tr>
<td>Birth weight (gr)</td>
<td>3305 (2976-3640)</td>
</tr>
<tr>
<td>Apgar score</td>
<td></td>
</tr>
<tr>
<td>1-minute</td>
<td>8 (7-8)</td>
</tr>
<tr>
<td>5-minute</td>
<td>9 (9-10)</td>
</tr>
</tbody>
</table>

*Values are presented as number (%), median (interquartile range), or number only.
Table . Biochemical Parameters of 96 Neonates with Late Neonatal Hypocalcemia.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median (IQR)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mg/dL)</td>
<td>6.9 (0.9)</td>
<td></td>
</tr>
</tbody>
</table>
| Phosphorus (mg/dL)
(normal: 5.2-8.4) | 7.2 (2.4) | Low: 6 (6.3)
Normal: 63 (65.6)
High: 27 (28.1) |
| ALP (IU/L)
(normal: 145-420) | 197 (136.7) | Normal: 87 (90.6)
High: 9 (9.4) |
| iPTH (pg/mL)
(normal: 5-65) | 69.1 (68.6) | Low: 2 (2.1)
Normal: 50 (52.1)
High: 44 (45.8) |
| 25(OH)D (ng/mL)
(deficiency <12
insufficiency 12-20
sufficiency >20) | 6.3 (4.9) | Deficiency: 83 (86.5)
Insufficiency: 5 (5.2)
Sufficiency: 8 (8.3) |

ALP: alkaline phosphatase, iPTH: intact parathormone, 25(OH)D: 25 hydroxyvitamin D, IQR: interquartile range, n: number.

Table . Biochemical Parameters in Mothers of Term Neonates with Late Neonatal Hypocalcemia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median (IQR)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mg/dL)</td>
<td>8.9 (0.9)</td>
<td></td>
</tr>
</tbody>
</table>
| Phosphorus (mg/dL)
(normal: 2.5-4.5) | 3.9 (0.87) | Normal: 71 (88.8)
High: 9 (11.3) |
| ALP (IU/L)
(normal: <150) | 126 (60.1) | Normal: 57 (70.4)
High: 24 (29.6) |
| iPTH (pg/mL)
(normal: 10-65) | 65 (56.0) | Low: 1 (1.1)
Normal: 43 (49.4)
High: 43 (49.4) |
| 25(OH)D (ng/mL)
(deficiency <12
insufficiency 12-20
sufficiency >20) | 5.2 (4.1) | Deficiency: 80 (93)
Insufficiency: 4 (4.7)
Sufficiency: 2 (2.3) |

ALP: alkaline phosphatase, iPTH: intact parathormone, 25(OH)D: 25 hydroxyvitamin D, IQR: interquartile range, n: number.
Fig. 1. Correlation between maternal and neoanatal serum 25 hydroxyvitamin D levels.