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Dear Editor, 

Your recent first (1, 2) and second (3, 4) round fluid debates were enjoyable and interesting. The editor and authors 
are to be congratulated for an excellent distillation of the key elements of this important discussion. We have a few 
comments relative to key points that were made.

First, Drs. Della Rocca and Vetrugno state that dynamic indices cannot be used as indicators of fluid responsiveness (FR) 
during open chest conditions. Respectfully, we disagree. The authors provide us with two “supporting” references, one by 
Wyffels (5), and the other by Lansdorp (6). The first of these two papers included 15 patients, 10 of whom exhibited dynam-
ic indices (DynI) that were less than 10% or were within the gray zone (7, 8). DynI within these ranges are unlikely to be 
associated with FR. Of note, all patients demonstrated physiologic concordance with the passive leg raising (PLR) maneuver: 
Stroke volume variation (SVV) and pulse pressure variation (PPV) decreased and the cardiac index (CI) rose, even during 
open chest conditions, though the rise in CI was not statistically significant in this small sample. The second paper by Lans-
dorp investigated FR in post-cardiac surgical patients within the Intensive Care Unit (ICU) and does not address the use of 
dynamic indices during open chest conditions. The idea that DynI lose their predictive ability during open chest surgery is 
also supported by de Waal who demonstrated that DynI were no more useful than static indicators for predicting FR during 
open chest conditions (9). Contrary to these findings, Reuter (10), Suehiro (11), Lee (12), Kang (13), and Rex (14) have 
all demonstrated that DynI can be used to predict FR during cardiothoracic surgery. How is the practicing anesthesiologist 
to reconcile these contradictory conclusions? This question was best answered by Jean Louis Teboul, who not only described a 
plausible physiologic mechanism based on transpulmonary pressure changes generating meaningful DynI during open chest 
conditions, but also provides us with a solid understanding of how DynI should be interpreted during open chest condi-
tions. Assuming that appropriate clinical conditions are met for using DynI (15), Teboul states “the presence of high PPV (or 
SVV) is indicative of fluid responsiveness under both closed and open chest conditions. However, under open conditions, 
other tools are still required to diagnose the origin of hemodynamic instability because the presence of low PPV and SVV 
cannot preclude a positive hemodynamic response to fluid.” (16). As with any hemodynamic parameter, the clinician must be 
aware of its underlying physiologic mechanism, its clinical meaning, and the pitfalls that may derail its interpretation.

Second, Goal-Directed Hemodynamic Therapy (GDHT) is a term that describes the protocolled use of cardiac output and 
related parameters as end-points for the administration of fluids and/or inotropic therapies with the objective of optimizing 
organ perfusion and thus improving surgical outcomes. Optimum hemodynamic management represents the cornerstone of 
perioperative GDHT, and it includes rational fluid management (17). In this context, the “zero-balance” approach is a form 
of Goal-Directed Fluid Therapy (GDFT). Although the concept of GDFT was first suggested more than 30 years ago (18), 
there remains no consensus about the most effective goals for fluid therapy or the most appropriate monitoring methods. 
As such, despite evidence demonstrating the potential benefit of this technique in several disease states (19), GDFT remains 
a well-accepted concept that has yet to translate into an established standard of care (20). One of the many reasons that 
explain this incongruity is the fact that GDFT is based on fluid challenges and the patient’s response to them. Accordingly, 



as pointed out by Della Rocca and Vetrugno (4), based on 
the editorial by Takala (21), the crucial issue concerning FR 
testing is what to do with the information gleaned from it. 
As pointed out, FR should be considered a normal physio-
logic response for an individual with a healthy cardiovascular 
system; on the other hand, patients with heart failure, who 
most certainly can be FR, may easily suffer iatrogenic fluid 
overload if given fluids until they lack responsiveness thus 
generating undesirable outcomes. Among these negative out-
comes, we highlight pulmonary complications. Licker et al. 
commented that high fluid rates during thoracic surgery may 
produce lung injury and pulmonary complications. Likewise, 
a more restrictive fluid management is important to prevent 
such complications in other high risk surgical and non-surgi-
cal patients. Corcoran et al. (22) showed that GDFT reduc-
es the incidence of pneumonia, and a restrictive strategy of 
fluid delivery also reduces pulmonary edema. In critically ill 
patients, extra-vascular lung water (EVLW) monitoring may 
represent a valuable safety parameter to predict fluid overload 
(23), which is associated with prolonged mechanical venti-
lation and increased mortality in critically ill patients, and, 
more specifically, in patients with sepsis (24, 25). A study in 
acute respiratory distress syndrome (ARDS) patients suggests 
that high EVLW is an independent risk factor for mortality 
in ARDS (26). Accordingly, in patients where acute circula-
tory failure and ARDS coexist, fluid administration should 
be limited even in cases of preload responsiveness because of 
the severity of lung injury (27), as assessed by increased lung 
water and by alteration of pulmonary vascular permeability 
(28). In this regard, rational fluid administration should include 
restriction of fluids especially in patients at high risk for develop-
ing pulmonary complications. 

Third, we wish to comment on two points in the Editorial 
comments made by Dr. Mert Senturk, that accompany Lick-
er et al. (Fluid therapy in thoracic surgery: A zero balance tar-
get is always the best!”). Dr. Senturk raises the concept of the 
glycocalyx in fluid management and suggests that we have to 
“revise all the knowledge we have, such as the Frank-Starling 
Curve”. Dr. Senturk must mean that our understanding of 
the glycocalyx requires a revision of the Starling Principle, not 
the Frank-Starling curve. Indeed, JR Levick and Michel CC 
presented a historical treatise that explained in great detail 
the role of the intact glycocalyx on transcapillary fluid bal-
ance entitled Microvascular Fluid Exchange and the Revised 
Starling Principle (29). Drawing upon a history of data from 
Papenheimer, Soto-Rivera, Landis, Zweifach and Michel, 
the authors propose how the intact glycocalyx, by creating 
a low-protein filtrate in the sub-glycocalyx space, prevents 
reabsorption of fluid from the tissue space back into the vas-
cular compartment. The absence of reabsorption means that 
edema fluid must return to the vascular compartment by way 
of the lymphatic system and this is a slow process. The take 
home message for anesthesiologists and intensivists is that edema 
can be induced quickly but resolves slowly. 

In his concluding statement Dr. Senturk asks about the ex-
istence of the “3rd space”. The history of the “3rd space” con-
cept has been thoroughly reviewed by Jacobs (30), and can 
be summarized as an issue of precision, or lack thereof, in 
measurement techniques and terminology. Early studies de-
signed to assess volume changes of the intra-vascular and 
extra-vascular compartments required measuring changes 
in tracer concentrations that were assumed to be specific for 
their intended compartment. Frequently, however, at the end 
of the observation period, the total quantities of injected trac-
er could not be accounted for. It is likely that tracer equilib-
rium had not been reached and that non-specific binding of 
the various tracers was higher than expected. Therefore, the 
“missing tracer” was not in some un-measurable 3rd space that 
was “consuming fluid”, but rather, was simply not accounted 
for due to measurement errors. 

From a nomenclature standpoint, “the 3rd space” has occa-
sionally been used to mean a fluid compartment that has 
very slow turnover and therefore has very different kinetic 
parameters compared to interstitial fluid and is not available 
to “refill” the vascular space. For example, ascites and pleural 
effusions are examples of such pathological fluid collections. 
From a terminology standpoint, calling this slow turnover 
compartment a “3rd space” lacks precision and has, histori-
cally, created confusion. From a clinical perspective, there is no 
rationale to use the term “3rd space”. 
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