Investigation of the Antimicrobial Activity of Some Ethyl Paraben Hydrazide-Hydrazone Derivatives

Short Title in English: Hydrazide-hydrazone Activity

Ufuk İnce¹, Muhammed İhsan Han²*
¹ Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Kayseri, Turkey
² Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kayseri, Turkey

Corresponding Author Information
Muhammed İhsan Han
hanihsan@gmail.com
+90 5052414385
https://orcid.org/0000-0001-5610-0869
22.11.2021
25.04.2022
26.04.2022

ABSTRACT
Introduction: The development of antimicrobial molecules that have been discussed with big achievement over the past decades provided many classes of semisynthetic or synthetic compounds. The resistance to many antimicrobial agents requires the discovery of novel molecules.

Methods: In this study, ten previously reported ethyl paraben hydrazide-hydrazone derivatives were evaluated for their in vitro antibacterial and antifungal activities. The microbroth dilution method was used for the determination of the minimum inhibitory concentration (MIC) values of novel molecules.

Results: The antimicrobial activities of the molecules were found in a wide range with MIC values of 2-256 μg/mL. The synthesized compounds showed good to moderate antimicrobial activity compared with the standards. Among the synthesized molecules, Compound 3g showed the best antimicrobial activity at 2 (μg/mL) to Staphylococcus aureus strain (ATCC 29213).

Conclusions: Ethyl Paraben hydrazide-hydrazone compounds in our study were found to have antimicrobial activities. Ethyl paraben is currently used as an antibacterial agent and preservative in preparations. These studies are necessary since they detect the relationship between the substitutions and activity.

Keywords: Antimicrobial activity, ethyl paraben, hydrazide-hydrazone, Broth micro-dilution method, in vitro.

INTRODUCTION
Since the beginning of the last century, various antimicrobial molecules have been systematically introduced to use, both experimentally and also by trial and error. Because of the exceptional
genetic plasticity of the microorganisms, misuse, and world population, resistance to bacterial strains have appeared and have radiated throughout the world \cite{1}. Today, antibiotic resistance has become a big clinical and public health problem and resistance rates are climbing dangerously all over the world. Meanwhile, minimizing toxicity and development of drug resistance, an optimal antimicrobial dose ensures enough drugs to access a clinical response. Better methods to pursue and rapidly adjust antimicrobial dosing are required to understand, although current approaches to antimicrobial dose optimization address fixed variability \cite{2}. Resulting in high morbidity and mortality reports, the antibiotic treatment diversity is restricted for existing hard-to-treat multidrug-resistant bacterial infections \cite{3}. For human and veterinary pathogens, antibiotic-resistant genes constituting the environmental “resistome” get transferred \cite{4}. On developing new antimicrobial drugs, all scientists, governments, health sectors, and societies must take the necessary precautions and support investigations.

Hydrazide-hydrazone compounds are molecules that result in the formation of a Schiff base on the structure by the reaction of hydrazides with various aldehydes and ketones. It is known that hydrazide-hydrazones have various pharmacological activities \cite{5}. According to the literature above it was shown that hydrazide-hydrazone compounds have antimicrobial activity \cite{6-12}. Meanwhile, we tested our compounds for their antimicrobial activity. In the present study, 10 previously reported ethyl paraben hydrazide-hydrazone derivatives were tested for their antibacterial and antifungal activity with using various microorganism strains.

MATERIALS AND METHODS

Antimicrobial Activity Tests

The synthesized ten compounds were investigated for their potential antimicrobial activities against *Staphylococcus aureus* (ATCC 29213), *Escherichia coli* (ATCC 25922) (Gram-positive and Gram-negative bacteria, respectively), *Candida albicans* (ATCC 10231) (fungus), and the clinical isolates of these microorganisms. The study was conducted according to the Clinical Laboratory Standards Institute (CLSI) M100-S28 protocol for bacteria \cite{13} and CLSI M27-A3 protocol for fungi \cite{14}. In the study, cation-adjusted Mueller Hinton Broth (CAMHB) and RPMI-1640 mediums were used for the determination of potential antibacterial and antifungal activity, respectively.

The compounds were dissolved in 1 mg/0.976 ml DMSO with a final concentration of 1024 µg/ml and the serial dilutions of each compound at the range of 2-512 µg/mL were prepared in 96-well microplates, after placing broth medium in each well. Suspension of each microorganism was prepared using McFarland:0.5 standard and as a result 10^5 cfu/ml densities were reached. Microplates containing bacteria and fungus were incubated for 16-20 hours at 37°C and 48 hours at 35°C, respectively. The reference antimicrobials were tested against these microorganisms at the same time. Besides, growth control of microorganisms and sterilization control of the mediums were tested. The antimicrobial activity of DMSO, which was used as a solvent in the study, was also tested. The wells with the lowest concentration with no microbial growth were determined as minimum inhibition concentrations. The detection was made by visual evaluation using dye MTT \cite{15}. Each test was repeated 3 times.

Chemistry

All compounds have been reported our previous study \cite{16}. Chemical route for synthesis of compounds is shown in Figure 1.
Figure 1. Synthesis route of hydrazide-hydrazone derivatives (3a-j) (i): NH₂NH₂·H₂O/C₂H₅OH, (ii) C₂H₅OH/glacial CH₃COOH/R-CHO.

Table 1. Substituents of compounds 3a-j

<table>
<thead>
<tr>
<th>Compounds</th>
<th>-R</th>
<th>Compounds</th>
<th>-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td></td>
<td>3f</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td>3g</td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td></td>
<td>3h</td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td></td>
<td>3i</td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td></td>
<td>3j</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSIONS
Several ethyl paraben hydrazide-hydrazone derivatives (3a-j) were synthesized and characterized (Figure 1 and Table 1). These compounds were previously studied and evaluated for anticancer activity. In this study, all compounds were evaluated for antimicrobial activity.

The MIC values determined for each substance and reference antimicrobial agents as a result of the experiment are shown in Table 2. The MIC values of the compounds were compared to reference antimicrobials (Ampicillin, gentamicin, and vancomycin for antibacterial; fluconazole
for antifungal activity). The antimicrobial activity of DMSO used as a solvent could not be determined. According to the result of the study, among the compounds with the best MIC value was Compound 3g. The MIC of compound 3g on the S. aureus (ATCC 29213) strain was 2 µg/mL, which is equivalent to the MIC of the ampicillin reference antibiotic. Compound 3g was shown to have the best antibacterial activity among the compounds in our study. All compounds except compound 3g had antimicrobial activity at the range of 64-256 µg/mL. Therefore, other compounds in the study were also found to have moderate antimicrobial activity. We have detected that Compound 3b had shown the highest antifungal activity. The MIC value of Compound 3b on C. albicans (ATCC 10231) and its clinical isolate was determined to be 64 and 64 µg/mL, respectively. It was determined that other compounds other than 3b had antifungal activity in the range of 128-256 µg/mL.

Among our compounds, a bis-3,5-trifluoromethyl substituent (Compound 3g) in this position increased the antibacterial activity against S. aureus when compared to other synthesized compounds. It was observed that other substituents did not effect on the activity. In the literature, there are many studies investigating the antimicrobial activities of synthesized chemical compounds. In one of these, Noshiranzadeh et al. evaluated antibacterial activity of some new hydrazide-hydrazone derivatives of lactic acid. In this study, which used the broth micro-dilution method, it was stated that the MIC value of the compounds was 64-128 µg/mL against some bacterial strains\[17\]. In another study, Abdelrahman et al. tested in vitro antibacterial activity of novel hydrazide-hydrazone deriverives. In this study it was found that some compounds were reported to exhibit better antibacterial activity compared to ampicillin and ciprofloxacin, respectively. For example, a compound in the study (MIC = 0.49 µg/mL) exceeded the MIC of ampicillin(0.98 µg/mL) which is the reference agent against S. pneumoniae\[18\].

In summary, the compounds in our study have shown ant microbial activity. However, the MIC value of the Compound 3g, which captures the reference antimicrobial, makes this compound stand out among others. Although studies in the literature show that hydrazide-hydrazone derivatives have variable antimicrobial MIC values, our study together with these studies supports the idea that these derivatives are promising antimicrobial molecule candidates for the future.

Table 2. In vitro MICs (µg/mL) observed of the compounds and reference antimicrobial drugs.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>3f</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>64</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>3g</td>
<td>2</td>
<td>256</td>
<td>128</td>
<td>128</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>3h</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>3i</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>3j</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>128</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>2</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gentamycin</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSION
In this study, several ethyl paraben hydrazide-hydrazone derivatives were screened for their antibacterial and antifungal activities. Among the synthesized molecules, compound 3g showed the best antimicrobial activity at 2 (μg/mL) MIC value to S.aureus strain (ATCC 29213). The MIC value of Compound 3b on C.albicans (ATCC 10231) and its clinical isolate was determined to be 64 and 64 µg/mL, respectively. Ethyl paraben is currently used as an antibacterial agent and preservative in preparations. Also as these studies are necessary to understand the relationship between the substitutions and activity, which can lead to the design and synthesis of more potent antimicrobial compounds which can take place in the therapeutic use.

ACKNOWLEDGEMENTS
This study was conducted at the Erciyes University, Faculty of Pharmacy. Synthesis part was supported by Erciyes University Scientific Research Projects Coordination Unit (THD-2018-8606).

AUTHOR CONTRIBUTIONS
UI and MİH performed all the experiments, interpreted data and prepared the manuscript; UI and MİH helped in procuring sample and edited the manuscript. UI and MİH conceptualized the research, designed the experiments, wrote and edited the manuscript.

CONFLICT OF INTEREST STATEMENT
Authors declare there is no conflict of interest.

REFERENCES

