Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

Yoshiharu Ohno
Hisanobu Koyama
Ho Yun Lee
Sachiko Miura
Takeshi Yoshikawa
Kazuro Sugimura

ABSTRACT
Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with \(^{15}\)O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.

Matched distribution of regional pulmonary blood flow (perfusion) and ventilation is required for pulmonary ventilation and perfusion assessment to proceed efficiently (1). A large amount of ventilation in lungs is matched by correspondingly high perfusion. In addition, the balance between pulmonary perfusion and ventilation differs according to the physiopathology of various pulmonary diseases, and the normal pattern of pulmonary blood flow often changes, sometimes exacerbating the disturbance in gas exchange (2, 3). Therefore, assessment of these regional perfusion pattern changes is important to understand the pulmonary pathophysiology of various pulmonary diseases. Multiple methods are currently available to quantitatively and qualitatively evaluate pulmonary perfusion in patients with pulmonary diseases.

Currently, regional pulmonary perfusion assessment for various pulmonary diseases as well as nodule and tumor perfusion assessments are performed by means of nuclear medicine studies (2–9), dual-energy (10–12) and dynamic first-pass contrast-enhanced perfusion computed tomography (CT) techniques (13–17), unenhanced and dynamic first-pass contrast-enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional (3D) or four-dimensional (4D) contrast-enhanced magnetic resonance angiography (MRA) (18–25). While perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT (SPECT/CT) are established as clinically available scintigraphic methods, they are limited by factors such as perfusion information with poor spatial resolution. Moreover, absolute quantification of pulmonary perfusion by radionuclide scanning requires arterial sampling and correction for tissue attenuation of gamma radiation emitted by technetium-99m. Although positron emission tomography (PET) with \(^{15}\)O water can measure absolute pulmonary perfusion (4), it requires a cyclotron for production of tracers with an extremely short half-life (2 min), and can currently be performed for limited academic and/or clinical purposes only. Clinicians are therefore concentrating...
their efforts on the application of CT- and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases.

This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases.

Basics of CT-based imaging techniques

Dual-energy CT

Dual-energy CT techniques using dual x-ray sources, dual-layer detectors, or fast kilovoltage-switching methods were introduced in the 1970s (24–26). However, several factors including insufficient tube technology and poor spatial and temporal resolutions have been identified as limitations of these techniques. In addition, mis-registration between the low-energy and high-energy datasets seemed unavoidable. However, improvements in the dual-energy CT technique have made it possible to simultaneously obtain datasets for two different photon spectra with satisfactory image quality in a single CT acquisition. Moreover, recent technical advances in CT have resulted in the development of CT scanners with a dual-source system that are equipped with two x-ray tubes and corresponding detectors mounted with a particular angular offset (10, 11, 27, 28), a single-source CT system with ultrafast tube voltage switching at an x-ray tube and the corresponding detector (10, 11), and a single-source CT system with a constant tube current and voltage setting and a corresponding detector that can compartmentalize detected x-ray photons into energy bins (11, 28). The detector for these approaches comprises two layers, an upper layer that absorbs the lower-energy photons and a lower layer registering the remaining higher-energy emissions; from these two datasets, two separate image series are reconstructed and analyzed (11, 28).

Each tube operates independently with regard to tube voltage and tube current on the dual-source CT platform, and makes it possible to obtain one consisting of simultaneous registration of high- and low-energy x-ray spectra. On the other hand, ultrafast tube voltage switching on a single-source CT platform differs from dual-source CT-based dual-energy CT in terms of both image data acquisition and processing methods but has similar applications. However, this method is characterized by a very small temporal difference between acquired CT data from low-energy and high-energy x-ray spectra, no matter which ultrafast tube voltage switching is performed during ultrafast gantry rotation (29). In contrast to the abovementioned two approaches, a third method, which has a single-source CT with two layered detectors, has been developed, but is not yet available for routine clinical practice. Therefore, the dual-source CT system is most frequently used for dual-energy CT-based perfusion assessment in routine clinical practice. Although their CT system and data acquisition methods are different, all three methods make it possible to demonstrate iodine distribution maps in the lungs in patients with pulmonary vascular diseases (Fig. 1) as well as nodules and/or masses. With dual-energy CT, the attenuation of iodine is far greater at 80 kVp than at 140 kVp, so this technique can be used for evaluation of pulmonary diseases by means of virtual unenhanced images (10, 30, 31), which may obviate additional acquisition of actual unenhanced CT scans. Thus, a single contrast-enhanced acquisition can yield both unenhanced and contrast-enhanced CT data (10, 30, 31). The basic principle of dual-energy CT involves material decomposition based on attenuation differences at different energy levels (32). In the lung—as an example of the three-component system, consisting of air, soft tissue, and iodine—the algorithm assigns a ratio of air and soft tissue to the voxel. At the same time, CT data at both energy levels are used to derive the additional iodine content.

Various image acquisition protocols for dual-energy CT by means of a few dual-source CT systems have been proposed in the literature (11, 33–36), but currently only a few published protocols are available for single-source CT systems (11, 33). Optimization of contrast medium injection parameters, including the use of a saline chaser bolus, can reduce artifacts, improve image quality, and increase diagnostic accuracy. High concentration of iodine contrast media (i.e., >300 mgI/mL) is recommended for dual-energy CT studies to improve the differentiation of iodine by means of dual-energy postprocessing algorithms. To evaluate both anatomical and functional information about pulmonary circulation (i.e., pulmonary vasculatures and perfusion), the scanning delay should be slightly longer (e.g., 4–7 s) than that for regular pulmonary CT angiography (CTA) examinations to allow for distribution of the contrast material in the lung parenchyma (33). Lu et al. (11) recommend bolus tracking for timing the injection with the
detection of the region of interest in the pulmonary trunk. However, Geyer et al. (34) reported that there was no significant difference in pulmonary artery enhancement when a timing bolus was used instead of automatic bolus tracking. Patients should hold their breath at a shallow inspiratory level during scan acquisition to avoid excessive influx of unenhanced blood from the inferior vena cava, resulting from the Valsalva maneuver associated with deep inspiration. In addition, dual-energy CT scans should be acquired in the caudal-cranial direction, so that the saline chaser bolus can reach the upper chest by the time this area is acquired, to avoid streak artifacts from highly concentrated contrast media in the subclavian vein or superior vena cava. On the other hand, Nance et al. (35) reported that a protocol using a high iodine concentration and a high injection delivery rate for contrast material delivery (iomeprol 400 at 4 mL/s, corresponding to an injection delivery rate of 1.6 g l/s) resulted in the best image quality of both pulmonary multidetector row CT angiography (MDCTA) images and perfusion map images of the lung. This is due to high attenuation in the pulmonary arteries and minimization of beam-hardening artifacts compared with the protocols involving a lower concentration or lower delivery rate. Kerl et al. (36) reported that a triphasic contrast medium injection protocol (50 mL of undiluted contrast medium in the first phase, followed by a constant volume of 30 mL of a 70%:30% saline and contrast medium mixture, and 50 mL of pure saline in the third phase) could generally prevent streak artifacts from high-attenuation contrast material in the superior vena cava.

Dynamic first-pass contrast-enhanced perfusion CT

During the late 1990’s and in 2000, the use of quantitatively analyzed dynamic first-pass contrast-enhanced perfusion CT by means of electron-beam CT was reported in animals and also in normal individuals and/or patients with pulmonary thromboembolism (13). However, after the introduction of multidetector row CT (MDCT) for clinical use, dynamic first-pass contrast-enhanced perfusion CT examination shifted from electron-beam CT to MDCT, and a few investigators have reported on the latter’s potential for quantitative assessment of tumor or nodule perfusion assessment for diagnosis of pulmonary nodules or lung cancer, or for therapeutic effect assessment of lung cancer patients undergoing conservative therapy (14–16, 37–39). Although the number of detector rows has been increased by every vendor from 4 to 64-detector row CT systems after clinical installation of MDCT, the limited scan range attainable with dynamic scanning at the same table position or the mix of a variety of perfusion data at different time points and positions within the scan range due to the helical scan method were major drawbacks of this technique until 2007 (14–16, 37–39).

In 2007, Toshiba Medical Systems installed a 320-detector row CT system with area detector CT (ADCT) for routine clinical practice. With ADCT, isotropic volume data of lung parenchyma and nodules or masses can be acquired simultaneously within a 160 mm area without helical scan. Thus, dynamic first-pass contrast-enhanced perfusion ADCT data can be obtained by means of continuous dynamic scanning, allowing for qualitative and quantitative evaluation of perfusion of pulmonary nodules (40–42). For these reasons, ADCT systems are now being used for not only morphologic examinations, but also functional assessments, especially real first-pass evaluation of perfusion a pulmonary nodule or mass perfusion by means of the dynamic first-pass contrast-enhanced perfusion ADCT technique using mathematical models (40–42). In addition, our proprietary software developed with Toshiba causes dynamic first-pass contrast-enhanced perfusion ADCT at different table positions to generate whole-lung dynamic first-pass contrast-enhanced perfusion ADCT data, and quantitatively analyzes regional perfusion information using the mathematical models (Fig. 2). Following the introduction of Toshiba’s ADCT scanner, General Electronic Healthcare also introduced a similar and new ADCT system with a 256-detector row in 2014, and has started to test its potential.

In routine clinical practice, dynamic first-pass contrast-enhanced perfusion ADCT can be performed using a dynamic volumetric scan, which can obtain 160 mm volumetric thin-section CT data without helical scan. All dynamic first-pass contrast-enhanced perfusion ADCT studies at our institution are currently performed with a 320-detector row CT scanner (40–42). Dynamic first-pass ADCT is generally obtained through the nodule within a 16.0 cm area with the following parameters: 320×0.5 mm collimation, 80kVp, 120mA, 0.5 s gantry rotation time, 512×512 matrix and 300–350 mm field of view (40–42). As contrast media injection protocol for this setting, a dual-head power injector is used for bolus administration of 20–45 mL (0.5 mL/kg body weight) of an iodinated contrast medium to all patients via a cubital vein at a rate of 5 mL/s, followed by 20 mL of saline solution at the same rate (40–42).

Although dynamic first-pass contrast-enhanced perfusion ADCT data can be obtained in routine clinical practice, it is difficult to qualitatively evaluate nodule and/or mass perfusion as well as lung parenchyma differences on dynamic first-pass contrast-enhanced perfusion ADCT images. Therefore, dynamic first-pass contrast-enhanced perfusion ADCT data for each subject is usually assessed in the form of quantitative perfusion parameter maps by means of mathematical models such as the single- and dual-input maximum slope and single-input Patlak plot models (41–43). The details of the mathematical model are not included in this paper, but several exports have suggested that the Patlak plot method is not well suited for dynamic first-pass contrast-enhanced perfusion CT data assessment for diagnosis of pulmonary nodules, nor for therapeutic effect assessment in patients with lung cancer following conservative therapy (43). Although several vendors as well as academia provide software for quantitative assessment of dynamic first-pass contrast-enhanced perfusion CT data, details of the software are usually of the black box variety. Therefore, clinicians should gain a clear understanding of the mathematical models involved in these software products before applying their clinical and academic purposes, when using dynamic first-pass contrast-enhanced perfusion CT examination in patients with pulmonary diseases.

Basics of MRI-based imaging techniques

Time-resolved contrast-enhanced MRA

Since the late 1990’s, 2D or 3D contrast-enhanced MRA has been widely utilized for pulmonary vasculature assessment and perfusion evaluation in routine clinical practice. In addition, high-gradient-strength systems combined with the development of short TR 3D gradient-echo sequences made the development of single breath-hold 3D contrast-enhanced MRA possible (44–49). Depending on patients’ ability to hold their breath, either high-spa-
Parallel imaging offers greater flexibility for reduction in signal-to-noise ratio (SNR), a trade-off between greater speed and undersampled scans. Although there is maps to create k-space information from geometry of surface coils and sensitivity organs. Parallel imaging uses the inherent solutions of 3D contrast-enhanced MRA in the early 2000’s (50–52), it became possible to increase spatial and temporal resolution monophasic protocols with scan times of 20–30 s or time-resolved multiphasic imaging protocols with scan times of less than 10 s can be used (44–49). Thus, even patients with severe dyspnea can be imaged by means of time-resolved sequences.

In addition, after the introduction and clinical application of parallel imaging techniques such as sensitivity encoding (SENSE) and generalized autocalibrating partially parallel acquisitions (GRAPPA) in the early 2000’s (50–52), it became possible to increase spatial and temporal resolutions of 3D contrast-enhanced MRA for not only lung, but also various other organs. Parallel imaging uses the inherent geometry of surface coils and sensitivity maps to create k-space information from under-sampled scans. Although there is a trade-off between greater speed and a reduction in signal-to-noise ratio (SNR), parallel imaging offers greater flexibility for imaging in the difficult environment of pulmonary vasculature. Since 2004, time-resolved 3D (or 4D) contrast-enhanced MRA has made it possible to increase spatial resolution to the same level as that of contrast-enhanced CTA and improve temporal resolution to less than 5 s by using 3D contrast-enhanced MRA with parallel imaging techniques for not only 1.5 Tesla (T), but also 3.0 T MRI systems (53–56). Therefore, time-resolved contrast-enhanced MRA is now considered to be one of the best MRI techniques for pulmonary vasculature and lung parenchyma perfusion evaluations of patients with various pulmonary diseases. In addition, for better visualization of pulmonary perfusion as well as better separation of pulmonary arterial, parenchymal, venous, and systemic arterial phases with this technique, time-resolved contrast-enhanced MRA should be employed with a sharp bolus injection protocol such as a total dose of 5 mL of standard-dose gadolinium contrast media with a bolus injection rate of 5 mL/s (Fig. 3) (53).

Dynamic first-pass contrast-enhanced perfusion MRI

Two general types of MRI sequences can be used to evaluate pulmonary perfusion for academic and clinical purposes: unenhanced perfusion MRI and dynamic first-pass contrast-enhanced perfusion MRI (57, 58). Although unenhanced perfusion MRI has both advantages and disadvantages compared with dynamic first-pass contrast-enhanced perfusion MRI, quantitatively and qualitatively assessed dynamic first-pass contrast-enhanced perfusion MRI has been more frequently and widely assessed due to its simpler clinical settings. This review article therefore deals with dynamic first-pass contrast-enhanced perfusion MRI in more detail.

According to these reports (19, 44, 59, 60), multiple images can be acquired during the first passage using an intravascular contrast agent through the pulmonary circulation with this technique. The images are generally obtained by using a 2D or 3D dynamic gradient-echo sequence with ultra-short echo time (TE) repetition time (TR), which are required to overcome signal loss due to the inhomogeneous magnetic susceptibility of lung tissue. Multiple images are acquired rapidly during a bolus intravenous administration of gadolinium contrast media, which also function as T1-shortening contrast agents. Images can be acquired either at multiple levels to evaluate the whole lung on 3D sequences, or at a single anatomic level on 2D sequences. In addition, images can be evaluated repeatedly during the passage of contrast material. Temporal resolution of dynamic first-pass contrast-enhanced perfusion MRI is higher than that of time-resolved contrast-enhanced MRA, and is therefore recommended for dynamic series using temporal resolution equal to or less than 1.2 s. This temporal resolution helps clinicians to clearly differentiate pulmonary arterial, parenchymal, pulmonary venous and systemic arterial phases. According to three of the reports (19, 59, 60), it also allows for quantitative assessment of pulmonary perfusion parameters similar to that performed in nuclear medicine studies as well as for dynamic first-pass contrast-enhanced ADCT by means of the principles of indicator dilution techniques. This technique provides regional pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) within the entire lung on 3D sequences and certain anatomical
positions within the lung on 2D sequences by means of pixel-by-pixel analysis, and clearly shows regional differences for each perfusion parameter in gravitational and iso-gravitational directions for not only normal subjects (Fig. 4), but also for patients with pulmonary diseases.

Clinical applications of imaging techniques

CT- and MRI-based perfusion assessment has been used for pulmonary diseases such as pulmonary nodules, lung cancer, chronic obstructive pulmonary diseases and pulmonary vascular diseases including pulmonary sequestration, pulmonary arterial venous fistula or malformation (PAVF or PAVM), acute or chronic pulmonary thromboembolism (PTE), and primary and secondary pulmonary arterial hypertension (PH) (17, 19, 61–66). This article focuses on the clinical applications of these techniques for pulmonary nodules, lung cancer, and pulmonary vascular diseases.

Diagnosis of pulmonary nodules

Dual-energy contrast-enhanced CT

In a study to test the utility of dual-energy CT for pulmonary nodule assessment, the detectability, number, and size of calcifications on virtual unenhanced CT images were assessed in comparison with those obtained on real unenhanced CT images. The results showed that 85% of calcifications within the nodule were detected on the virtual unenhanced CT images (30), but the calcifications seen on the virtual unenhanced CT images were smaller than those on the actual unenhanced CT images (30). This suggests that virtual unenhanced CT assessment of calcification within pulmonary nodules may not be satisfactory for the following reasons: greater image noise on the virtual than on the actual unenhanced CT images, comparatively lower SNR on the surface of calcifications, blurred edges resulting from the use of a low-pass filter, and low signal intensity of calcium removed from the iodine image during material decomposition (30). Since calcium detection within nodules implies a benign cause, the comparatively poorer depiction of calcification is one of the more serious limitations of virtual unenhanced CT.

The superior iodine distribution assessment with dual-energy CT may be even more important for routine clinical use. In contrast-enhanced CT with dual-energy CT, the material decomposition of iodine makes quantification theoretically possible by determining the CT number of pulmonary nodules on an iodine-enhanced image. Assessment of CT numbers on iodine-enhanced dual-energy CT images by subtracting the CT number on actual unenhanced CT from that on real contrast-enhanced CT images showed good agreement with the degree of enhancement determined by a conventional method. In addition, when the diagnostic performance of this technique was compared with that of traditional contrast-enhanced CT, iodine-enhanced imaging was more sensitive (23/25, 92% and accuracy (37/45, 82.2%) than traditional contrast-enhancement assessment or contrast-enhanced CT (sensitivity: 18/25, 72%; accuracy: 32/45, 71.1%), whereas the specificity of the former was equal to that of the latter (14/20, 70%) (30). These results show that the iodine component is successfully decomposed from the dual-energy CT data and that virtual unenhanced CT from that on real contrast-enhanced CT images showed good agreement with the degree of enhancement determined by a conventional method. In addition, when the diagnostic performance of this technique was compared with that of traditional contrast-enhanced CT, iodine-enhanced imaging was more sensitive (23/25, 92% and accuracy (37/45, 82.2%) than traditional contrast-enhancement assessment or contrast-enhanced CT (sensitivity: 18/25, 72%; accuracy: 32/45, 71.1%), whereas the specificity of the former was equal to that of the latter (14/20, 70%) (30). These results show that the iodine component is successfully decomposed from the dual-energy CT data and that virtual unenhanced CT is acceptable as a substitute for unenhanced CT. Furthermore, use of an iodine-enhanced image to measure the iodine component within a nodule can lead to a better assessment of the degree of contrast enhancement (Fig. 5). Although further investigations may be needed to determine the true clinical significance of dual-energy CT for pulmonary nodule assessment, measuring iodine values on a single scan after contrast enhancement appears to be viable.
in clinical practice, even though the iodine value does not represent the peak enhancement of the nodule.

Dynamic first-pass contrast-enhanced perfusion CT

The utility of dynamic contrast-enhanced CTs with a single-detector or MDCT scanner for differentiating malignant from benign nodules and tumors has been studied for the last few decades, and their respective sensitivities, specificities, and accuracies have been reported as 93%–100%, 52%–93%, and 77%–97% (17). Although several investigators have tested the capability of dynamic contrast-enhanced CT, one study assessed the utility of dynamic first-pass contrast-enhanced perfusion CT using 64-MDCT and the slope method as nodule perfusion analysis for differentiation of malignant from benign nodules, and reported that the sensitivity, specificity, and accuracy were 91%–94%, 82%–86%, and 90%–93%, respectively (17).

After clinical installation of ADCT in 2007, dynamic first-pass contrast-enhanced perfusion ADCT with mathematical models has been evaluated by investigators, who assessed the sensitivity, specificity, and accuracy as 65%–98%, 26%–82%, and 65%–90%, respectively (40–42). In addition, studies have directly compared the diagnostic performance of quantitatively assessed dynamic first-pass contrast-enhanced perfusion ADCT with that of PET combined with CT (PET/CT) using 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) and/or dynamic first-pass contrast-enhanced MRI with ultra-short TE (40–42), and found that the diagnostic performance of dynamic first-pass contrast-enhanced perfusion ADCT for distinguishing malignant from benign nodules was equal to or better than that of the other two systems (Fig. 6). Moreover, it may be even more important to differentiate pulmonary nodules requiring further intervention and treatment (malignant nodules and benign nodules with high biologic activity) from pulmonary nodules requiring no further evaluation (benign nodules with low biologic activity) than to differentiate malignant nodules from other nodules. For this type of differentiation, quantitatively assessed dynamic first-pass contrast-enhanced ADCT has been found to be more specific and accurate for dividing all nodules into two categories (40–42). This means that quantitatively assessed dynamic first-pass contrast-enhanced ADCT should perhaps be used in routine clinical practice in a complementary role or as a substitute for dynamic contrast-enhanced CT, dynamic contrast-enhanced MRI, FDG-PET, or PET/CT to determine whether further intervention and treatment are indicated rather than to differentiate pulmonary nodules as malignant vs. benign.

Dynamic first-pass contrast-enhanced perfusion MRI

Several groups of investigators have tested dynamic contrast-enhanced MRI for its utility in differentiating malignant from benign nodules in both small and large patient populations. The findings of a meta-analysis indicated that there were no significant differences in diagnostic performance between dynamic contrast-enhanced CT, dynamic contrast-enhanced MRI with various sequences, FDG-PET, and Tc-depotide SPECT (66). Therefore, dynamic contrast-enhanced MRI can be considered at least as effective as other modalities. However, a study directly comparing the diagnostic performance of semiquantitatively analyzed dynamic contrast-enhanced MRI with ultrashort TE with that of dynamic contrast-enhanced CT or PET/CT, also suggested the former’s specificity and accuracy were superior to those reported for dynamic CT and almost equal to or superior to those of FDG-PET or PET/CT (67) (Fig. 7). Therefore, dynamic first-pass contrast-enhanced perfusion MRI should perhaps be used in a complementary role or as a substitute for dynamic contrast-enhanced CT and FDG-PET or PET/CT for diagnosis of pulmonary nodules in routine clinical practice.

Therapeutic effect assessment and prediction for non-small cell lung cancer

Dual-energy CT

After dual-energy CT had been clinically installed, one study found a moderate correlation between the maximum standardized uptake value (SUVmax) from FDG-PET/
CT and maximum iodine-related attenuation of dual-energy CT in lung cancers (68). Analyses of histologic subtypes of lung cancer showed a stronger correlation between SUV\textsubscript{max} and maximum iodine-related attenuation in non-small cell lung cancer (NSCLC) than in small cell lung cancer (SCLC) (68). This difference could be explained by differences in tumor biology such as those in angiogenic features between NSCLC and SCLC. Therefore, measurements of the maximum iodine-related attenuation on dual-energy CT may be a useful surrogate parameter for the evaluation of therapy response of lung cancer. However, a lower correlation between SUV\textsubscript{max} and the maximum iodine-related attenuation in thoracic lymph nodes was noted, possibly because of differences in neo-angiogenesis between intrapulmonary tumors and lymph node metastases (68).

In addition, dual-phase dual-energy CT was introduced as a new tool for therapeutic effect assessment after conservative therapy including anti-angiogenesis therapy for not only primary lesions, but also mediastinal lymph node metastases in NSCLC patients (69, 70). These studies found that dual-phase dual-energy CT with iodine uptake quantification in terms of iodine uptake as well as arterial enhancement fraction is a feasible method with potential benefits for therapeutic effect prediction and/or assessment for NSCLC patients treated with conservative therapy (69, 70). In addition, this technique has the potential

Figure 5. a–d. A 76-year-old male with metastatic lung tumor in right lower lobe (arrows). Virtual unenhanced CT image (a) obtained from contrast-enhanced CT data is well matched with unenhanced CT image (b) and has similar image quality. Iodine map (c) generated from contrast-enhanced CT data depicts iodine distribution within nodule more clearly than contrast-enhanced CT image (d) generated from contrast-enhanced CT data obtained at 80 and 140 kVp does. Figure was reproduced from Ohno et al. (17) with permission.

Figure 6. a–d. A 72-year-old male with invasive adenocarcinoma in left lower lobe (arrows). Panel (a) shows dynamic first-pass contrast-enhanced perfusion CT data analyzed with single-input maximum slope method. Thin-section CT image (mediastinal window setting, left) shows a nodule with invasion of left hilum. Perfusion map (right) shows low perfusion of 23 mL/100 mL/min within the nodule. Extraction fraction (left) and blood volume (right) maps (b) from the same data as in panel (a) analyzed by Patlak plot method, indicating low extraction fraction (20 mL/100 mL/min) within the nodule (left) but high distribution volume (28 mL/100 mL) (right). Pulmonary perfusion (left), systemic perfusion (center), and total perfusion (right) maps (c) from the same data as in panel (a). Pulmonary and total perfusion maps show nodule perfusion is markedly lower than pulmonary parenchymal perfusion. Systemic perfusion map also shows low perfusion within the nodule. Pulmonary perfusion, systemic, and total nodule perfusions were calculated as 27, 23, and 50 mL/100 mL/min. FDG PET/CT image (d) shows high uptake of FDG within the nodule. Maximum standardized uptake value is 3.8. Figure was reproduced from Ohno et al. (17) with permission.
Since 2011, dynamic first-pass pulmonary contrast-enhanced perfusion ADCT has been in clinical use to obtain isotropic volume data within a 160 mm area without helical scan (40–42), and one study has tested its potential for quantitative therapeutic effect assessment of dynamic first-pass contrast-enhanced perfusion ADCT examination with high spatial resolution (43). Moreover, this study has suggested that, when dynamic contrast-enhanced perfusion ADCT is used, mathematical models can perform a key function in the improvement of prediction performance of therapeutic effect on NSCLC patients (43). Although further investigations are required, this technique, using the dynamic first-pass contrast-enhanced perfusion MRI method, promises to be as effective a tool for therapeutic effect assessment or prediction NSCLC patients as is FDG-PET, PET/CT, or dynamic contrast-enhanced MRI.

Dynamic first-pass contrast-enhanced perfusion MRI with ultrashort TE

Several studies have suggested that contrast-enhanced T1-weighted MRI and dynamic contrast-enhanced MRI including the perfusion MRI technique are as effective as FDG-PET or PET/CT for predicting as well as evaluating treatment response prediction or evaluation for thoracic oncology patients (17, 80). Another study has found that semiquantitatively assessed dynamic contrast-enhanced MRI using dynamic first-pass contrast-enhanced perfusion MRI can distinguish recurrence from nonrecurrence groups with a sensitivity of 55%–91%, specificity of 91%, and accuracy of 84%–91% (74). Therefore, these promising findings for the use of dynamic contrast-enhanced MRI parameters indicate that these techniques can provide additional information based on biologic changes in the behavior of tumors in NSCLC patients treated with conservative therapy. Therefore, standardization of MRI sequences, image processing, and semiquantitative or quantitative analyses are needed to realize the real significance of these techniques in this setting, which may also be used for establishing more accurate response criteria in the not too distant future.

Pulmonary thromboembolism

Dual-energy CT

Conventional pulmonary MDCT angiography can provide only morphologic information for patients with acute and
and reported that dual-energy CT may be more effective than the right ventricle/left ventricle (RV/LV) diameter ratio for disease severity assessment of patients with and without right heart dysfunction due to acute PTE. They found that the overall perfusion index, which was determined by placing the region of interest over the entire lung on a normalized lung perfused blood volume (nLung PBV) map, which was an iodine distribution map generated with commercially available software from Siemens Healthcare, was one of the predictors similar to RV/LV ratio (86). Therefore, when dual-energy CT is used for patients with suspected acute PTE, it was found that in the clinical setting it could not only diagnose acute PTE, but also more easily differentiate acute PTE patients with from those without right heart dysfunction (86). Therefore, dual-energy CT-based information may become one of the biomarkers for patients with acute PTE in routine clinical practice.

Time-resolved contrast-enhanced MRA

During the past decade, time-resolved contrast-enhanced MRA as well as contrast-enhanced MRA have been proposed as a new tool for diagnosis and patient management of PTE patients (19, 61, 62). Several studies (54, 55, 87–91) have evaluated the diagnostic performance of both non-time-resolved and time-resolved contrast-enhanced MRA for diagnosis of PTE (Table). In these studies, diagnostic performances of non-time-resolved and time-resolved contrast-enhanced MRA were evaluated as standard pulmonary digital subtraction angiography (DSA) and/or contrast-enhanced MDCT angiography, and their sensitivity and specificity were determined as 75%–100% and 95%–100%, respectively.

Another study demonstrated that the sensitivity of time-resolved contrast-enhanced MRA (83%) was significantly higher than that of contrast-enhanced MDCT angiography (75%, P < 0.05) on a per-vascular-zone basis, and specificity and accuracy of time-resolved contrast-enhanced MRA (specificity, 94%; accuracy, 94%) were significantly higher than those of ventilation-perfusion scan (specificity, 78% P < 0.05; accuracy, 75% P < 0.05) (54). Therefore, time-resolved contrast-enhanced MRA was found to be useful for the diagnosis of pulmonary embolism, and this technique may offer an alternative to ventilation-perfusion scintigraphy for imaging patients with suspected PTE (54).

The Prospective Investigation of Pulmonary Embolism Diagnosis III (PIOPED III) study (90), performed from 2006 to 2008, included 371 adults at seven centers, and the reference standard for this trial was determined by various tests including contrast-enhanced MDCTA and a nuclear medicine study. This study found that contrast-enhanced MRA often resulted in technically inadequate images, while the rate of such images varied considerably among centers. It was therefore concluded that the use of pulmonary contrast-enhanced MRA should be considered only at centers that routinely perform it well and only for patients for whom standard tests are contraindicated.

Dynamic first-pass contrast-enhanced perfusion MRI

Although the spatial resolution of dynamic first-pass contrast-enhanced perfusion MRI is inferior to that of time-resolved contrast-enhanced MRA, it may be more sensitive for the detection of subsegmental PTE (55, 91). Although the feeding blood vessels cannot be directly visualized, the visualization of characteristic wedge-shaped parenchymal perfusion defects allows for an indirect diagnosis of subsegmental pulmonary artery obstruction. This was also demonstrated in a recent study, where dynamic contrast-enhanced pulmonary perfusion MRI showed the highest sensitivity for assessment of PTE compared with real-time MRI with the True FISP sequence and time-resolved contrast-enhanced MRA (55, 91). In clinical practice, however, pulmonary perfusion MRI and time-resolved contrast-enhanced MRA will usually be performed as a combined protocol. Moreover, a combined protocol of dynamic contrast-enhanced perfusion MRI and time-resolved contrast-enhanced MRA will usually be performed as a combined protocol.
ilar to that of the well-investigated RV/LV diameter ratio (92). In addition, the specificity and accuracy of RV/LV diameter ratio and the APTE index determined by means of dynamic first-pass contrast-enhanced perfusion MRI were significantly higher than those of APTE indexes obtained from embolic burdens and observed on contrast-enhanced MDCTA and contrast-enhanced MRA, although logistic regression analysis demonstrated that each index was a significant predictor (92).

Pulmonary hypertension

Dual-energy CT

Since 2007 dual-energy CT has been used for not only imaging of pulmonary vascular abnormality, but also of lung parenchyma perfusion abnormalities as a single examination (13, 81, 93). It is well known that dual-energy CT has the capability to display pulmonary perfusion defects with results that are in good agreement with those obtained with perfusion scintigraphy with and without SPECT or SPECT fused with CT (SPECT/CT) (13, 81, 94, 95). Therefore, dual-energy CT is currently being intensively tested to determine its utility for patients with pulmonary hypertension including chronic thromboembolic pulmonary hypertension (CTEPH) (13, 96).

The presence and significance of perfusion abnormalities in patients with pulmonary hypertension have been most widely evaluated for patients with CTEPH (94, 97–100). The presence of consequent perfusion heterogeneity was first detected with perfusion scintigraphy (101), and more recently observed on time-resolved MRA and/or dynamic first-pass contrast-enhanced perfusion MRI (102). After installation of dual-energy CT in routine clinical practice, clinicians have been able to effectively identify this perfusion abnormality on iodine maps derived from dual-energy CT data. Furthermore, a meta-analysis reported on the capability of contrast-enhanced CTA with and without dual-energy CT or electrocardiogram-gated ADCT information for CTEPH patients (103). In this study, the patient-based analysis demonstrated a pooled sensitivity of 76%, a pooled specificity of 96%, and a pooled diagnostic odds ratio of 191. In addition, the vessel-based analyses at three different levels showed a pooled sensitivity of 88%–95%, a pooled specificity of 89%–96%, and a pooled diagnostic odds ratio of 76–751. The authors therefore concluded that CT is a suitable method for imaging proximal branches in order to differentiate between CTEPH and pulmonary endarterectomy patients. In addition, this study found that dual-energy and electrocardiogram-gated ADCT can increase the sensitivity for subsegmental arterials, thus making them promising imaging techniques for balloon pulmonary angioplasty. Further investigations are thus warranted to determine the clinical relevance of dual-energy CT for patients with CTEPH.

Time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI

Time-resolved contrast-enhanced MRA as well as contrast-enhanced MRA have been tested as qualitative methods for patients with pulmonary hypertension due to not only CTEPH, but also other causes, while dynamic first-pass contrast-enhanced perfusion MRI has been evaluated during the past decade as a new and more sophisticated quantitative method (63, 64, 102–107) (Fig. 8). In addition, quantitatively assessed dynamic first-pass contrast-enhanced perfusion MRI has been tested to determine its utility as an imaging-based biomarker for various clinical purposes regarding patients with pulmonary hypertension (102).

Several studies have contributed to the evolution of the role of qualitative methods using time-resolved contrast-enhanced MRA as well as dynamic first-pass contrast-enhanced perfusion MRI in the workup of CTEPH (63, 64, 103–107). One of the studies found that using contrast-enhanced MDCTA as the gold standard, combined unenhanced MRA using the steady-state free precession (SSFP) sequence, contrast-enhanced MRA and contrast-enhanced perfusion MRI can improve the diagnostic performance of CTEPH as compared with contrast-enhanced MRA alone (106). In this study, the authors found that the SSFP sequence was useful for visualization of the centrally based disease of chronic clot in the main pulmonary arteries. Moreover, both contrast-enhanced MRI techniques were considered useful for the detection of disease with greater frequency compared with CTA for stenosis, post-stenotic dilation, and occlusions, although these areas of better performance could not be confirmed when the statistical method was used that assumes contrast-enhanced MDCTA as the gold standard (106). It was therefore concluded that qualitatively assessed contrast-enhanced MRA as well as dynamic first-pass contrast-enhanced perfusion MRI would appear to perform less satisfactorily than contrast-enhanced MDCTA from the point of view of simple sensitivity and specificity.

In contrast to qualitative assessments such as time-resolved contrast-enhanced MRA, contrast-enhanced MRA and dynamic

Table. Summary of relevant studies for assessing diagnostic performance of non-time-resolved and time-resolved contrast-enhanced MRA in patients with pulmonary thromboembolism

<table>
<thead>
<tr>
<th>References</th>
<th>No. of patients</th>
<th>Methods</th>
<th>Gold standard</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaney et al. (90)</td>
<td>30</td>
<td>3D contrast-enhanced MRA</td>
<td>Pulmonary DSA</td>
<td>75–100</td>
<td>95–100</td>
</tr>
<tr>
<td>Gupta et al. (91)</td>
<td>36</td>
<td>3D contrast-enhanced MRA</td>
<td>Pulmonary DSA</td>
<td>85</td>
<td>96</td>
</tr>
<tr>
<td>Oudkerk et al. (92)</td>
<td>141</td>
<td>3D contrast-enhanced MRA</td>
<td>Pulmonary DSA</td>
<td>77</td>
<td>98</td>
</tr>
<tr>
<td>Ohno et al. (54)</td>
<td>48</td>
<td>Time-resolved contrast-enhanced MRA</td>
<td>Pulmonary DSA</td>
<td>92</td>
<td>94</td>
</tr>
<tr>
<td>Kluge et al. (55)</td>
<td>62</td>
<td>Real-time MRI with True FISP, time-resolved</td>
<td>16-detector row CT angiography</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>Stein et al. (93)</td>
<td>371</td>
<td>3D Contrast-enhanced MRA</td>
<td>Combination of various tests</td>
<td>78</td>
<td>99</td>
</tr>
</tbody>
</table>

3D, three dimensional; MRA, magnetic resonance angiography; DSA, digital subtraction angiography; MRI, magnetic resonance imaging; True FISP, true fast imaging with steady-state precession sequence; CT, computed tomography.
first-pass contrast-enhanced perfusion MRI, quantitatively assessed 3D dynamic first-pass contrast-enhanced perfusion MRI has been continuously tested since 2004 (60). By using indicator dilution theory as well as deconvolution analysis, this method can provide quantitatively analyzed PBF, PBV and MTT information for patients with pulmonary hypertension from various causes.

The therapeutic effect of dynamic first-pass contrast-enhanced perfusion MRI on CTEPH patients was assessed for a direct comparison with contrast-enhanced MDCTA and time-resolved contrast-enhanced MRA (Fig. 9) (102). In this study, differences in pre- and post-treatment PBF, PBV and MTT information for patients with pulmonary hypertension from various causes.

On the other hand, one study reported that mean regional PBF and MTT of primary pulmonary hypertension (PPH) patients were significantly different from those of healthy volunteers (108). In addition, PBF showed good negative correlation with pulmonary vascular resistance (PVR) ($r=-0.79$, $P < 0.0001$) and MTT and PVR moderately positive correlation ($r=0.60$, $P = 0.022$). Further, PBF showed moderately negative correlation with mean pulmonary arterial pressure (MPAP) ($r=-0.70$, $P = 0.005$), and MTT and MPAP fairly positive correlation ($r=0.54$, $P = 0.048$). This indicates that 3D dynamic first-pass contrast-enhanced perfusion MRI can provide clinicians with a noninvasive assessment of disease severity as indicated by PVR and MPAP in patients with PPH.

As well as for PPH patients, this technique was also tested for a direct comparison of disease severity assessment with thin-section CT for pulmonary hypertension patients with connective tissue disease (CTD) (109). In this study, systolic pulmonary arterial pressure and mean PBF of patients without pulmonary hypertension were significantly higher than of those with pulmonary hypertension ($P < 0.05$), and MTT of the former was significantly shorter than that of the latter ($P < 0.05$) (109). In addition, thin-section CT-based disease severity showed significantly good and negative correlation with mean PBF ($r=-0.77$, $P < 0.01$) and mean PBV ($r=-0.59$, $P = 0.01$), and significantly moderate and positive correlation with MTT ($r=0.65$, $P < 0.01$). Therefore, quantitatively assessed

Figure 8. a–c. A 67-year-old male with chronic thromboembolic pulmonary hypertension (CTEPH). Contrast-enhanced MDCT angiography (a) demonstrates dilatation of pulmonary artery due to CTEPH, although no thrombi are observed. Time-resolved contrast-enhanced MRA (b) shows heterogeneously decreased pulmonary perfusions with no depiction of thrombi in central and peripheral pulmonary arteries. Ventilation and perfusion SPECT (c) demonstrate no ventilation defects and heterogeneous perfusion defect in both lungs.
3D dynamic first-pass contrast-enhanced perfusion MRI appears to have good potential for assessment of disease severity and progression of pulmonary hypertension in CTD patients. Moreover, this technique, similar to Doppler echocardiography and the pulmonary function test, may be useful for noninvasive physiopathologic assessment of CTD patients, and may be used as a substitute for right heart catheterization for CTD patients with pulmonary hypertension.

Although further investigations are warranted, quantitatively assessed dynamic first-pass contrast-enhanced perfusion MRI may in the near future be able to perform a complementary role in the management of patients with pulmonary hypertension from various causes in routine clinical practice.

Conclusion

New contrast-enhanced imaging techniques such as dual-energy CT, dynamic first-pass contrast-enhanced perfusion ADCT, time-resolved contrast-enhanced MRA, and dynamic first-pass contrast-enhanced perfusion MRI of the lung are useful for not only thoracic oncology patients, but also patients with various pulmonary vascular diseases in routine clinical practice. While the first-pass contrast agent technique is minimally invasive but associated with risks and high costs for contrast administration, these new techniques are simple and easily applied in the clinical setting. Moreover, some of these techniques can potentially be used for quantitative assessment of regional pulmonary perfusion, nodule or tumor parameters, and physiologic and pathophysiologic analysis of various pulmonary diseases. Future developments in image acquisition and postprocessing for quantitative analyses can enhance the clinical application of these techniques for evaluation of pulmonary diseases, as well as expand their clinical relevance to other thoracic diseases.

Acknowledgements

Authors thank Yuji Kishida, MD, Shinichiro Seki, MD PhD (Department of Radiology, Kobe University Graduate School of Medicine), Noriyuki Negi, RT, Katsusuke Kyotani, RT, Tohru Murakami, RT (Center for Radiology and Radiation Oncology, Kobe University Hospital), Yoshimasa Maniwa, MD PhD (Division of Thoracic Surgery, Department of Surgery, Kobe University Graduate School of Medicine), Yoshihiro Nishimura, MD PhD (Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine), Kenichi Hirata, MD PhD (Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine).
References

20. Ohno Y. New applications of magnetic resonance imaging for thoracic oncology. Semin Respir Crit Care Med 2014; 35:27–40. [CrossRef]

42. Leung DA, McKinnon GC, Davis CP, Pfammatter T, Krestin GP, Debatin JF. Breath-hold, contrast-enhanced, three-dimensional MR angiography. Radiology 1996; 200:569–571. [CrossRef]

64. Kreitner KF. Noninvasive imaging of pulmonary hypertension. Semin Respir Crit Care Med 2014; 35:99–111. [CrossRef]

97. Hoey ET, Agrawal SK, Ganesh V, Gopalan D, Screaton NJ. Dual energy CT pulmonary angiography: findings in a patient with chronic thromboembolic pulmonary hypertension. Thorax 2009; 64:1012. [CrossRef]

